
Combining Predictions for Accurate Recommender
Systems

Michael Jahrer
commendo

research&consulting, Graz
University of Technology

8580 Köflach
Austria

michael.jahrer@
commendo.at

Andreas Töscher
commendo

research&consulting, Graz
University of Technology

8580 Köflach
Austria

andreas.toescher@
commendo.at

Robert Legenstein
Institute for Theoretical

Computer Science, Graz
University of Technology

8010 Graz
Austria

robert.legenstein@igi.tugraz.at

ABSTRACT
We analyze the application of ensemble learning to recom-
mender systems on the Netflix Prize dataset. For our anal-
ysis we use a set of diverse state-of-the-art collaborative fil-
tering (CF) algorithms, which include: SVD, Neighborhood
Based Approaches, Restricted Boltzmann Machine, Asym-
metric Factor Model and Global Effects. We show that lin-
early combining (blending) a set of CF algorithms increases
the accuracy and outperforms any single CF algorithm. Fur-
thermore, we show how to use ensemble methods for blend-
ing predictors in order to outperform a single blending al-
gorithm. The dataset and the source code for the ensemble
blending are available online [9].

Categories and Subject Descriptors
H.2.8 [Database Applications]: [Data mining]

General Terms
Algorithms, Measurement, Performance

Keywords
Recommender Systems, Netflix, Supervised Learning, En-
semble Learning

1. INTRODUCTION
Recommender systems help users to discover items within

large web shops, to navigate through portals or to find friends
with similar interests. The most interesting applications for
recommender systems have thousands of users which gener-
ate huge amounts of data. For example, online shops col-
lect purchase data and provide each user with a personalized
shopping page on the login. The sources of information used

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’10, July 25–28, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0055-1/10/07 ...$10.00.

for the recommender system can be widespread. Users gen-
erate events like the purchase of a product, rating a product,
creating a bookmark or clicking on a specific item. Indepen-
dently of the area of application or the type of information
used, it is a major goal to increase the accuracy while re-
taining the capability of being able to use big datasets.

Generating more accurate predictions is of general inter-
est. For a subscription service like Netflix, good recommen-
dations are a key to customer loyalty. In the case of online
stores better recommendations directly increase the revenue.
Davis et al. [6] showed how to use collaborative filtering for
disease prediction.

Over the last two decades many powerful collaborative fil-
tering algorithms were published. However, the performance
can be significantly improved, if ensemble methods are used.
An ensemble method combines the predictions of different
algorithms (the ensemble) to obtain a final prediction. The
combination of different predictions into a final prediction is
also referred to as“blending”. Ensemble methods were key to
the solutions of the top teams in the Netflix Prize contest [20,
15, 11, 17]. The most basic blending method is to compute
the final prediction simply as the mean over all the predic-
tions in the ensemble. Better results can be obtained, if the
final prediction is given by a linear combination of the en-
semble predictions. In this case, the combination coefficients
have to be determined by some optimization procedure, in
general by regularized linear regression. Linear blending was
widely used in the Netflix Prize contest, but more elaborate
schemes are possible. However, not all available ensemble
methods are practical for large-scale recommender systems
because the massive amount of data leads to massive time-
and memory consumption.

In this article, we provide a systematic empirical anal-
ysis of different blending methods on the Netflix dataset.
The Netflix dataset [2] is one of the largest available bench-
mark datasets for collaborative filtering algorithms today.
It contains about 108 ratings, collected in a time period of 7
years. We discuss and test several promising algorithms for
blending, including neural network blendings, bagged gradi-
ent boosted decision trees, and kernel ridge regression. Our
results show that linear blending is not optimal, and that it
can be significantly outperformed by the presented methods.

These methods are not limited to blending collaborative
filtering predictors, they can be used for supervised regres-
sion problems in general.

The remaining article is structured as follows. In Section 2
we give an overview of the collaborative filtering algorithms
which will be used as base predictors for the blending exper-
iments. Section 3 introduces the algorithms used for blend-
ing, before we present the results of our analysis in Section
4. Conclusions are given in Section 5.

2. COLLABORATIVE FILTERING
Collaborative filtering uses the history of user-item events

in order to predict future ones. These events can be any
source of user-generated information, such as purchases, rat-
ings, clicks, bookmarks, favorite-adds, whishlist-adds, etc.
Within this work we focus on rating based collaborative fil-
tering.

The problem of rating prediction can be described with
the help of the user-item rating matrix R = [rui] where
entry rui is the rating of user u for item i. This matrix has
the size U ×M with U being the number of users and M
the number of items. In general R is sparsely filled, because
a user typically does not rate every item. The goal of the
prediction model is to accurately predict missing values of
this matrix, i.e. to produce predictions r̂ui for how an item
i would be rated by user u. In collaborative filtering, the
system infers a model from all available data in R. One
possibility to do so is to use a low-rank matrix factorization.

train qualifyingprobe

pTrain pTest

Figure 1: The Netflix dataset consists of a train-
ing set with approximately 100 million ratings, with
a fixed hold out set called probe set. The goal of
the Netflix competition was to predict the qualify-
ing set, which was unknown during the competition.
In order to generate a dataset for blending we used
predictions from different collaborative filtering al-
gorithms for the probe set. For our experiments we
randomly split the probe set with 1.4 million ratings
into two disjoint sets called pTrain and pTest.

In Table 1 we list the most useful collaborative filtering
algorithms of the Netflix Prize challenge. These algorithms
include k-nearest neighbor (KNN) methods (KNNitem, KN-
Nuser), methods based on matrix factorization (SVD, AFM,
SVDe), restricted Boltzmann machines (RBM), and global
effects (GE). The RMSE column lists the root-mean-squared
error (RMSE) that a single algorithm can achieve with good
learning parameters, e.g. proper learn rate and regulariza-
tion constants. Each single algorithm models the data in
a different way. Therefore a suitable combination of these
predictions can significantly improve the prediction perfor-
mance. For example a linear combination of all single models
leads to an RMSE of 0.87. The prediction algorithm of Net-
flix, called “Cinematch”, achieved an RMSE of about 0.95
at the time when the competition was started in 2006 [2].

algorithm RMSE
(approx.)

training
time

prediction
time

memory

KNNitem 0.92 O(U ·M2) O(Mlg(M)) O(M2)

KNNuser 0.93 O(M ·U2) O(Ulg(U)) O(U2)
SVD 0.90 O(|L|) O(1) O(M+U)
AFM 0.92 O(|L|) O(1) O(M)
SVDe 0.88 O(|L|) O(1) O(M+U)
RBM 0.90 O(|L|) O(1) O(M)
GE 0.95 O(|L|) O(1) O(M+U)

Blend <0.87

Table 1: A list of various collaborative filtering al-
gorithms with asymptotic training/prediction time
and memory consumption. We add approximate
RMSE values on the Netflix Prize dataset (quali-
fying set). The prediction time is defined as the
asymptotic time needed to generate a single predic-
tion r̂ui. M is the total number of items, U is the
total number of users and |L| the total number of
ratings in the training set. Red values are critical
for large scale applications.

More sophisticated blending techniques lower the RMSE be-
low 0.87.

In the following we provide an overview of collaborative fil-
tering algorithms listed in Table 1. Detailed explanations of
these algorithms can be found in the Netflix Prize Winner
Reports [20, 11, 15]. With these algorithms we construct a
dataset (Table 2), which we use for the blending experiments
in Section 4. This dataset is available online [9].

The provided dataset is constructed as follows. Each col-
laborative filtering algorithm is trained on the Netflix train
set, with the probe set excluded. The predictions for the
probe set are used for the blending dataset. For the exper-
iments in Section 4 we split the probe set randomly in two
equally sized sets called pTrain and pTest, as visualized in
Figure 1. For the blending experiments we will train the
models on the pTrain set and use the pTest set as a hold
out set.

KNN item-item
A prediction r̂ui for the rating of a user u on item i in an
item based k-nearest neighborhood model is obtained by cal-
culating a weighted sum over the ratings of the user u for the
k items most similar to item i. The weights and the similar-
ities are proportional to the correlations cij between item i
and other items j. Therefore, a precalculated item-item cor-
relation matrix C is useful, due to the constant access time
to any item-item correlation cij in this case. This results in a
memory consumption of O(M2), where M is the number of
items. The training time is dominated by the calculation of
the item-item correlation matrix C, which needs O(U ·M2)
operations. For one prediction, the KNN selects the k best
correlated items to item i. This can take up to O(M) op-
erations. The sorting of this list takes O(M · log(M)) time,
which is the asymptotic bound for the prediction time.

KNN user-user
The model is exactly the same as in the KNN item-item, but
items and users are flipped. Hence the prediction and train-

nr name RMSE description

1 AFM-1 0.9362 AFM, 200 features, η = 1e−3, λ =
1e−3, learnrate η is multiplied with
0.95 from epoch 30, trained for 120
epochs

2 AFM-2 0.9231 AFM, 2000 features, η = 1e−3, λ =
2e−3, trained for 23 epochs, based
on residuals of KNN-4.

3 AFM-3 0.9340 AFM, 40 features, η = 1e−4, λ =
1e−3, trained for 96 epochs

4 AFM-4 0.9391 AFM, 900 features, η = 1e−3, λ =
1e−2, trained for 43 epochs

5 GE-1 0.9079 GE, 16 effects, based on residuals of
KNN-1

6 GE-2 0.9710 GE, 16 effects, on raw ratings
7 GE-3 0.9443 GE, 16 effects, based on residuals of

KNN-4
8 GE-4 0.9209 GE(with time), 24 effects, based on

residuals of AFM-2
9 KNN-1 0.9110 KNN item, Pearson correlation,

k = 24 neighbors, based on resid-
uals of AFM-1

10 KNN-2 0.8904 KNN item, Set correlation [20], k =
122, based on residuals from a chain
of algorithms RBM-KNN-GE(with
time)

11 KNN-3 0.8970 KNN item, Pearson correlation,
k = 55, based on residuals of a dis-
crete RBM model with nHid = 150

12 KNN-4 0.9463 KNN item, Pearson correlation,
k = 21, based on residuals of GE-2

13 RBM-1 0.9493 RBM, discrete, nHid = 10, η =
0.002, λ = 0.0002

14 RBM-2 0.9123 RBM, discrete, nHid = 250, η =
0.002, λ = 0.0004

15 SVD-1 0.9074 SVD, 300 features, η = 8e−4, λ =
0.01, trained for 158 epochs, based
on residuals of 1GE (item mean)

16 SVD-2 0.9172 SVD, 20 features, η = 0.002, λ =
0.02, trained for 158 epochs, based
on residuals of 1GE (item mean)

17 SVD-3 0.9033 SVD, 1000 features, with adaptive
user factors (AUF [20]), η = 0.001,
λ = 0.015, trained for 158 epochs

18 SVD-4 0.8871 SVD extended, 150 features, indi-
vidual learnrates η and regulariza-
tion constants λ are automatically
tuned on the probe set [20].

19 support - The number of ratings per user; we
take the natural logarithm of the
support as additional input.

Table 2: The predictors listed above form the
dataset used for the blending experiments in Section
4. The predictors are trained on the Netflix train
set, the probe set being excluded. The reported
RMSE values are on the probe set. The complete
dataset is freely available online [9].

ing bounds are also reversed. See Table 1 for the complete
list. For the Netflix Prize dataset this method is unpracti-
cal due to the huge memory consumption for precomputing
the user-user correlation matrix. In this context we want to
mention the possibility of learning an implicit factorization
of the full user-user correlation matrix. This reduces the
amount of required memory down to O(U ·K) where K is
the number of factors in the factor matrices. This enables
us to keep all the user-user correlations in memory by stor-
ing the factorized version. One particular correlation is then
just a dot product of the corresponding features. For details
see [21].

SVD (matrix factorization)
This is probably the most popular collaborative filtering
technique. A prediction is given by the dot product of a
user feature vector pu and the item feature vector qi: r̂ui =
pT

u qi, leading to O(1) runtime per prediction. The SVD
learns two factor matrices, user features P = [p1, ...,pU]
and item features Q = [q1, ...,qM] via stochastic gradient
descent. There are many extensions to SVD in the literature,
for example the SVD++ model described in [10]. In prac-
tice the whole training needs a few tens of epochs over the
whole dataset until convergence, leading to O(|L|) training
time. The model parameterizes two matrices with f rows.
Thus, the memory consumption is O(M + U). We assume
the number of f is a constant, in practice usual values are
e.g. f = 50. Both, training and prediction time have opti-
mal asymptotic runtime behavior, which makes the SVD an
excellent candidate for large scale recommendation applica-
tions.

AFM (asymmetric factor model)
The asymmetric factor model was first described by Paterek
in [14]. In the plain SVD model, a user is represented by the
feature vector qu. The AFM model represents a user by the
items he has rated. Thus, no explicit user feature is stored
as parameter. In other words, the AFM model parameter-
izes only item features. A so called “virtual user feature”

yu is given by yu = |N(u)|−1/2 P
i∈N(u) pi, where the set of

items, which was rated by the user u, is denoted by N(u).
pi are item-dependent features. One can show that the spe-
cial normalization of the item feature sum is necessary, when
assuming normal-distributed feature values. This represen-
tation offers several benefits, for example integration of new
data and new users without retraining the whole model [13].
The prediction time is constant (like SVD), because one can
store the precalculated virtual user features after training,
r̂ui = yT

u qi. Training time is similar to SVD, because the
AFM is trained with stochastic gradient descent and a batch
update on the virtual features pi.

SVD extended
The Netflix Prize dataset comes with rating date informa-
tion. This enables us to add additional user and item fea-
tures, based on the time and rating frequency. We define
frequency as the number of votes a user gives on a particu-
lar day. For each additional feature the learn rate and regu-
larization parameters have to be set correctly by optimizing
them on a validation set, as suggested in [18]. Training time
rises by a constant, therefore one obtains the same asymp-
totic complexity as plain SVD: O(|L|). The same applies for
prediction time and memory consumption. Large extended

SVD models, (called SBRAMF and extensions in [20]), have
shown outstanding accuracy over the rest of collaborative
filtering algorithms. They are specialized SVD models and
need a lot of effort in training and tuning various meta-
parameters. Koren describes various ways of integrating the
date information into collaborative filtering models [12].

RBM (Restricted Boltzmann Machine)
In general a Boltzmann machine is a stochastic generative
model. The restricted Boltzmann machine [16] is a neural
network with one input layer and one hidden layer. For
collaborative filtering, the visible units correspond to items.
The training is done epoch-wise over all users. For each user
the visible units get activated with the items rated by the
user. Learning works well with contrastive divergence learn-
ing [16] and has O(|L|) training time. Prediction complex-
ity is constant, because the probabilities of the hidden layer
can be precalculated user-wise, hence O(1). This leads to a
simple dot product enclosed by a sigmoid function for gen-
erating recommendations. The accuracy of RBMs applied
on collaborative filtering problems are superior compared to
AFMs because of the non-linearity. Training is performed
user-wise and converges after a few ten epochs.

GE (global effects)
Global effects are based on user and item features, such as
support (number of votes), mean rating, mean standard de-
viation, mean rating date, etc. The idea of global effects is
to calculate “hand-designed” features, which are equivalent
to a SVD with fixed item or user features. Bell et al. origi-
nally described ten global effects in [1]. Six additional global
effects are described in [20]. The RMSE of 16 global effects
applied to the Netflix Data is about 0.95. Global effects can
be effective when applied to residuals of other algorithms.

Combinations
A popular method to combine collaborative filtering algo-
rithms is residual training [20]. In residual training several
models are trained sequentially. The first model is trained
on the raw data. Then, the ith model in the sequence is
trained on the errors of the (i−1)th model for i > 1, i.e. the
prediction of the (i−1)model is subtracted from the raw data
and used as input to the ith model. We found that item-item
KNNs are most effective, when they are applied on residu-
als of RBMs. When constructing such a residual chain, the
predictions of the individual algorithms in the ensemble be-
comes more diverse, which is beneficial for the final blend.
The final blender has access to all the predictors generated
by various CF models on various residuals of other models.
Table 2 lists all algorithms used for this blending. Some of
them are trained on raw ratings, whereas others are based
on residuals of others. This aspect is explicitly denoted in
the description column.

3. BLENDING
The combination of different kinds of collaborative fil-

tering algorithms leads to significant performance improve-
ments over individual algorithms. Blending predictions is a
supervised machine learning problem. Each input vector xi

is the F -dimensional vector of the predictions in the ensem-
ble. For N data samples, one collects the vectors x1, . . . ,xN

in an N × F matrix X of predictions. The target values for

these n data points are collected in an N -dimensional vector
y. For the case of the Netflix dataset used in this article,
the entries of y are integer ratings between 1 and 5. The
blending algorithm is formally a function Ω : RF 7→ R. The
input x is a vector of individual predictions, the output is a
scalar. We want to minimize the prediction RMSE on a test
set

RMSE =

vuut 1

N

NX
i=1

(Ω(xi)− yi)
2. (1)

We use 18 predictors and the logarithm of the user sup-
port (Table 2) of the Netflix Prize dataset as input. Many
machine learning models are not directly applicable because
of the huge number of samples. Evaluation is done on the
probe dataset (1.4M samples), which is a hold-out set of the
100M training set. The probe set is the same as specified
by Netflix for the competition. We divided the probe set
randomly into two equally sized subsets, the pTrain set and
the pTest set. We note here that the individual algorithms
in the ensemble were trained on the original training set,
i.e. the whole dataset excluding the probe set. However, the
training of the blending algorithm was done on the pTrain
set, i.e., one half of the probe set. Then the evaluation was
performed on the pTest set, i.e. the probe set without the
pTrain set. We perform blending on the probe set because
it represents the desired distribution of users and ratings we
want to optimize.

We begin our empirical evaluation with simple methods
like linear blending, then we move to binned blending, which
is the application of learners on structured subsets. Gradient
boosted decision trees and neural networks deliver most ac-
curate results when they are combined with bagging [3]. The
k-nearest neighbors algorithm and kernel ridge regression are
computationally too costly to be applied to the whole pTrain
set. Therefore, multiple models are trained on small random
subsets of pTrain and predictions are averaged. Finally we
compare the results.

Parameter selection
Every blending algorithm has dataset dependent parameters
(e.g. regularization in linear regression, number of training
epochs in neural networks). In order to select the correct one
we use either k-fold cross validation or the out-of-bag esti-
mate in bagging [3] as feedback for parameter selection. For
the non-gradient descent based algorithms we use a simple
coordinate search for the exploration (APT2 in [19]). Pre-
diction of new samples can be done either by retraining the
whole model with found parameters on all data (called “re-
training”) or the mean prediction of the k models in the
k-fold cross validation can be used to generate predictions
(called “cross validation mean” [5]). In validation with bag-
ging we use the out-of-bag estimate as feedback. Bagging
many copies of the model on slightly different training data
delivers superior accuracy compared to retraining or cross
validation mean. Cross validation mean delivers better re-
sults than retraining in complex models.

Linear Regression - LR
Assuming a quadratic error function, optimal linear combi-
nation weights w (vector of length N) can be obtained by
solving the least squares problem. For any input vector x,

the prediction is Ω(x) = xT w. Weights w are calculated
with ridge regression, w = (XT X + λI)−1XT y, where I de-
notes the identity matrix. Cross-validation is used in order
to select a proper ridge regression constant λ.

Binned Linear Regression
Due to the huge size of the training set one can divide the set
into B disjoint subsets and determine a separate blending for
each subset b = 1, . . . , B. For linear regression we denote the
blending weights for subset b by wb. Each bin should have
approximately the same number of ratings. The training
set can be split by using a histogram on one of the following
criteria.

• Support : The support of a data point (u, i) is the
number of votes by user u. The blender can now base
the weighting of predictors dependent on how many
rating the user has given. RBMs are prone to receive
high weight when the user has only a few votes in the
data. SVDs are highly weighted when much informa-
tion from a user is available.

• Time : The time of a data point (u, i) is the day on
which the rating rui was performed. Predictions are
mixed together with time dependency. When using
this binning criteria, the blender can easily model time-
dependent blending.

• Frequency : The frequency of a data point (u, i) is the
number of ratings from a user at day t. This criteria
enables the blender to be selective, based on the user’s
rating day frequency. The blender has the ability to
give predictions other weights when a user votes many
times on a particular day.

A prediction is given by

r̂ui = xT wb. (2)

Here, b is in general chosen based on information about user
u and item i. For example, if we divide the Netflix probe-set
into 5 support-bins, the following formula gives the bin b:

b =

8>>>>><>>>>>:

1, |N(u)| < 34

2, 35 ≤ |N(u)| < 70

3, 71 ≤ |N(u)| < 146

4, 147 ≤ |N(u)| < 321

5, else,

(3)

where |N(u)| denotes the number of ratings of a user u. We
tried neural networks as blending algorithm per bin, but this
was not as successful as taking the whole data set (results
are not shown).

Neural Network - NN
Small neural networks can be trained efficiently on huge
data sets. The training of neural networks is performed
by stochastic gradient descent. The output neuron has a
sigmoid activation function with an output swing of −1 to
+1. To generate rating predictions in the range of [1, 5] we
use a simple output transformation. For example the out-
put is multiplied by α = 3.6 and the constant β = 3.0 is
added (works well on our experiments). The learning rate

is η and every epoch the constant η(−) is subtracted, which

helps to find a good local minima. This works better com-
pared to an exponential learnrate decay (multiplication with
a constant). No weight decay or batch update is used.

Bagged Gradient Boosted Decision Tree - BGBDT
The main drawback of a single decision tree is its moderate
accuracy. The discretized output function of a tree limits its
ability to model smooth functions. The number of possible
output values of a tree corresponds to the number of leaves.
For regression problems, such as blending predictions, this
is a big disadvantage. Blending predictions should result in
a smooth function.

N
boost

N
bag

Gradient Boostingparallel
(independent)

serial (chain)

Figure 2: Bagged Gradient Boosted Decision Tree.
A prediction of the BGBDT consists of results by
Nbag ·Nboost single decision trees. Both, bagging and
gradient boosting improves the accuracy.

A single tree is trained recursively by splitting always that
leaf which provides the output value for the largest number
of training samples. The growth of the tree is stopped when
the number of leaves exceeds the integer constant K. A split
is found by taking the one which reduces the RMSE best.
This implies that we search on all inputs a threshold value.
The predicted value of a leaf is a constant.

Additionally we found it useful to add the random sub-
space idea in the determination of the optimal split on each
node (like in random forests from Breiman [4]). The sub-
space size S is the number of features considered in each
node to find the optimal split.

Breiman [3] shows how bagging can be applied to improve
the accuracy of decision trees. Bagging is a simple schema
that can be applied to every supervised learning problem
in order to improve accuracy. It is based on training Nbag

copies of the model on slightly different training sets. Each
training set is produced by sampling with replacement. The
samples, which are not inside the training set are used for
validation. Averaging over all model copies results in the
out-of-bag estimate (oob). The drawback of bagging is the
increased training time. We use Nbag as the bagging size.

Friedman introduced an interesting idea to improve the
accuracy of a learning machine. He called the technique
“Stochastic Gradient Boosting” [7]. The main idea is to train
multiple learners of the same type in a chain. Each model
learns only a fraction of the desired function Ω, controlled
by the learn rate η. This works as follows: the first model

Ω1 in the chain is trained on the unmodified targets y1 = y
of the dataset. The second model trains on y2 = y − η y1.
So targets in each cascade are yi = y −

Pi−1
j=1 η yj . The

final prediction model is Ω(x) =
PM

i=1 ηΩ(x), where M is
the length of the boosting chain.

Finally we end up with a model that combines the ben-
efits of bagging, gradient boosting and random subspace
selection. The algorithm is called now BGBDT - Bagged
Gradient Boosted Decision Tree (see Figure 2).

Kernel Ridge Regression Blending - KRR
The learning algorithm is described in [20]. The Gauss ker-
nel k(x,y) = exp(−(||x − y||2)/σ2) is used in our exper-
iments. The width σ of the kernel and the regularization
parameter λ are tuned with cross validation.

KRR has a training time complexity of O(N3) (invert the
Gram matrix) and space requirements of O(N2), hence it is
practical impossible to train on all data points. To make it
work, we use a small subset of the data to train the KRR
model. Doing this multiple times and average all outcomes,
we obtain an accurate blending model. We evaluate the
impact of the subset size and the number of averaged mod-
els, with respect to the accuracy measured in RMSE on the
pTest set.

K-Nearest Neighbors Blending - KNN
The template-based KNN algorithm is very slow in predict-
ing new samples, if the training set is large. The model is
given by the following formula:

Ω(x) =

P
k∈D(x) yk · d(x,xk)P

k∈D(x) |d(x,xk)| , (4)

where the set D(x) consists of indices of the k-nearest
neighbors to x in the training samples. The distance d(·, ·)
is the inverse of the Euclidean distance. The neighborhood
size K is adjusted by cross validation. We use again a small
subset of the training set to build the model. Averaging over
many random subsets delivers our final prediction.

4. RESULTS
In the first step of training the collaborative filtering al-

gorithms, we remove the probe set from the dataset. The
evaluation of the blending techniques is performed on the
probe set, which contains 1408395 samples.

We split the probe set randomly in two equally sized
halves, 704197 samples are used for training (pTrain) and
704198 for testing (pTest). All reported runtimes are mea-
sured on an Intel i7 machine running at 3.8GHz with 12GB
of main memory.

Linear Regression
The linear regression technique is used to obtain a base-
line estimate of the RMSE on the pTest set. This is done
with regularized linear regression. The ridge regression con-
stant λ = 5e−6 is set to minimize the RMSE on the cross-
validation set.

Table 3 shows the weights for each of the predictors in the
ensemble (from Table 2) including the support and the con-
stant input. The largest weight is assigned to the constant
input because of the uncentered target values. The weight
of 3.673 corresponds to the mean value of the targets. The

A
F

M
-1

(0
.9

3
6
2
)

A
F

M
-2

(0
.9

2
3
1
)

A
F

M
-3

(0
.9

3
4
0
)

A
F

M
-4

(0
.9

3
9
1
)

G
E

-1
(0

.9
0
7
9
)

G
E

-2
(0

.9
7
1
0
)

G
E

-3
(0

.9
4
4
3
)

G
E

-4
(0

.9
2
0
9
)

K
N

N
-1

(0
.9

1
1
0
)

K
N

N
-2

(0
.8

9
0
4
)

K
N

N
-3

(0
.8

9
7
0
)

K
N

N
-4

(0
.9

4
6
3
)

R
B

M
-1

(0
.9

4
9
3
)

R
B

M
-2

(0
.9

1
2
3
)

S
V

D
-1

(0
.9

0
7
4
)

S
V

D
-2

(0
.9

1
7
2
)

S
V

D
-3

(0
.9

0
3
3
)

S
V

D
-4

(0
.8

8
7
1
)

lo
g
(s

u
p
p

o
rt

)

co
n
st

.
1

−
0
.0

8
3

−
0
.0

8
4

−
0
.0

7
7

+
0
.0

8
8

+
0
.0

9
8

−
0
.0

0
3

−
0
.0

8
1

+
0
.1

7
6

+
0
.0

2
9

+
0
.2

7
2

−
0
.0

9
4

+
0
.0

1
0

+
0
.0

2
5

+
0
.0

6
6

−
0
.0

0
8

+
0
.0

9
4

+
0
.0

8
0

+
0
.2

2
7

−
0
.0

0
8

+
3
.6

7
3

Table 3: Blending weights of an optimal linear com-
bination. This leads to 0.875258 RMSE on the
pTest set. The RMSE on the cross validation set
is 0.87552. The number in the brackets is the probe
RMSE per model.

second largest weight has the strongest KNN model, KNN-2
with a weight of 0.272. Due to the nature of linear regres-
sion, the weights are not restricted to be positive. Some of
the predictors receive negative weights. This can be inter-
preted as negative-compensation of a particular effect in the
data. With linear regression one can achieve an RMSE of
0.87525 on the pTest set.

Binned linear regression
This is linear regression on predefined subsets of the training
data. For each of the training and test samples, the support
(number of ratings), the date (day of the rating) and the
frequency (number of ratings of the user per day) is avali-
able. Based on this information we split the data into 2,
5, 10 or 20 nearly equal sized bins. We select the proper
regularization constant per bin with cross validation.

type 2 bins 5 bins 10 bins 20 bins

support 0.874877
(V:0.87517)

0.874741
(V:0.8750)

0.874744
(V:0.87499)

0.87485
(V:0.87513)

date 0.875212
(V:0.87545)

0.875195
(V:0.87541)

0.87527
(V:0.87544)

0.87537
(V:0.87558)

frequency 0.87518
(V:0.87537)

0.87510
(V:0.87521)

0.87512
(V:0.8752)

0.87517
(V:0.87531)

Table 4: RMSE values obtained with binned linear
regression on the pTest set. The small values in the
brackets below are RMSEs from the cross validation.

The best results are obtained with binning that is based
on the support. Too many bins increase the RMSE. The
best RMSE of 0.874741 on the pTest set was obtained with
a bin size of 5 and is a slight improvement over non-binned
linear regression.

Neural Network Blending
We investigated different numbers of neurons of a neural
network with a single hidden layer and networks with two
hidden layers. Table 5 summarizes the results. The RMSEs
with one hidden layer are slightly better. For cross valida-
tion with retraining (prediction type “retraining”) we obtain
an RMSE of 0.873365 with 30 hidden neurons. The perfor-
mance can be enhanced by bagging. This lowers the RMSE

to 0.873191 (generated by averaging 128 networks with 30
neurons in the hidden layer).

network
setup

validation
type

RMSE
validation

train
time

RMSE
pTest

19-30-1 retraining
8-CV

0.873633 1.5[h] 0.873365

19-30-1 cross valid.
mean 8-CV

0.873633 0.88[h] 0.873316

19-30-1 bagging
size=32

0.87347 4.3[h] 0.873191

19-30-1 bagging
size=128

0.873436 17.3[h] 0.873185

19-70-1 bagging
size=128

0.87342 33.6[h] 0.873163

19-150-1 bagging
size=128

0.873473 65.8[h] 0.873169

19-50-30-1 bagging
size=128

0.873455 48.6[h] 0.87318

Table 5: Results from different neural network
blends. We use in all networks the same learning
rate η = 5e−4, η(−) = 5e−7. Output transformation
constants are α = 3.6, β = 3.0.

We increased the number of neurons in the hidden layer
in combination with bagging. The best results are obtained
with 70 neurons, which leads to an RMSE of 0.873163. The
advantage of neural network based blending is the excellent
accuracy and the fast prediction time (a few ten seconds for
the complete pTest set). The drawback of neural networks
is the long training time.

Bagged Gradient Boosted Decision Tree
We analyzed Bagged Gradient Boosted Decision Trees with
varying bagging size Nbag, varying subspace size S, varying
number of leaves K, and varying learning rate η.

Our results suggest that smaller learning rates and larger
bagging sizes improve the RMSE. The optimal subspace size
depends on the data. A good value to start with is the square
root of the number of features. Also the maximum number
of leaves in a single tree is data dependent.

We found that the BGBDT blender deliver better results
when the splits in building a single tree are chosen at ran-
dom. This idea stems from P. Geurts “Extremely random-
ized trees” [8]. Thus, the threshold in a single tree node is
chosen by selecting a random target value. For example a
BGBDT with Nbag = 128, K = 50, S = 20 (full subspace),
and η = 0.1 trained for 255 epochs results in a RMSE of
0.873842 on Test. The validation RMSE is 0.874103 and
the training time is 7.3[h].

Kernel Ridge Regression Blending
Kernel ridge regression is not directly applicable to the train-
ing set of N = 7 · 105 samples. The Gram matrix of size of
NxN must be inverted. A PC with 16GB of main memory
can store and invert matrices up to N = 60000 (single preci-
sion). We therefore use the following method: We are train-
ing many KRR models on random subsets and average their
predictions. Figure 3 shows curves where subsets with 1%
to 6% of the training set were used. The regularization con-
stant and the width of the Gaussian kernel are optimized on

fixed:
Nbag = 32
K = 300
S = 2

η = 0.1
0.874783
0.87437
0.62[h]

η = 0.05
0.87467
0.874352
1.21[h]

η = 0.03
0.874624
0.87433
1.94[h]

η = 0.02
0.874593
0.874309
3.27[h]

fixed:
Nbag = 32
η = 0.1
S = 2

K = 500
0.874838
0.874427
0.48[h]

K = 300
0.874783
0.87437
0.62[h]

K = 200
0.874767
0.874399
0.73[h]

K = 100
0.874934
0.874546
1.39[h]

fixed:
η = 0.02
K = 300
S = 2

Nbag = 16
0.874936
0.874381
1.1[h]

Nbag = 32
0.874593
0.874309
3.27[h]

Nbag = 64
0.874554
0.874293
7.01[h]

Nbag = 128
0.874517
0.874288
14.66[h]

fixed:
η = 0.1
K = 500
Nbag = 32

S = 1
0.874838
0.874427
0.48[h]

S = 2
0.874784
0.874377
0.42[h]

S = 4
0.87477
0.874405
0.68[h]

S = 8
0.874841
0.874504
1.11[h]

Table 6: BGBDT blending results. The first column
denotes the fixed parameters. In the next columns
the first line is the tested parameters, second line is
the validation RMSE, third line is the pTest RMSE
and fourth line is the training time. We vary the
learn rate η, the subspace size K and the bagging
size Nbag. For all results we use optimal splits in
training a single tree.

a 4-fold cross-validation set for every single model. Not very
surprisingly, the outcome shows that more data is better.
All models benefit from averaging over multiple runs with
different data. This approach can be seen as a form of bag-
ging. An average of nine KRR models on 6% data achieves
an RMSE of 0.8740 on the pTest set, which is significantly
better than the linear regression baseline RMSE = 0.87525.
The curves with 1% and 2% data show a saturation effect
at about 100 averaged models, i.e. no improvement can be
expected with an increase of the number of averaged models
above 100.

0 50 100 150 200 250
0.874

0.8745

0.875

0.8755

0.876

0.8765

number of averaged KRR models

R
M

S
E

 o
n

 p
T

e
s
t

linear regression

1% subset
2% subset
3% subset
4% subset
5% subset
6% subset

Figure 3: Kernel ridge regression applied to the
blending of CF predictions. The KRR is trained on
a random subset of the data (1%...6%). More data
and more averaged models result in a lower RMSE.

KRR is worse than neural networks, but the results are
promising. An increase of the training set size would lead
to a more accurate model. But the huge computational re-
quirements of KRR limits us to about 6% data. The train
time for one KRR model on 6% subset (about 42000 sam-
ples) is 4 hours.

K-Nearest Neighbors Blending
The runtime of the k-nearest neighbors algorithm is quadratic
in N (the number of training samples). Training and meta
parameters tuning on all 700k data is too time consuming.
We therefore tried the same approach as in the KRR blend-
ing model. We investigated the effect of averaging many
models, where each of them is trained on a random subset
of data. The results are shown in Figure 4. Again, more data
and more averaged models are better. But the KNN shows
very bad performance in terms of RMSE. The reported RM-
SEs are in the region of 0.885...0.884. The linear regression
baseline achieves RMSE = 0.87525 on the pTest set.

0 20 40 60 80 100 120 140

0.884

0.885

0.886

0.887

0.888

number of averaged KNN models

R
M
S
E
 o
n
 p
T
e
st 1% subset

2% subset
3% subset
5% subset
8% subset
12% subset
15% subset

Figure 4: K-nearest neighbors applied to the blend-
ing of CF predictions. The model is trained on a
random subset, we averaged the predictions of many
random subsets. In each model, the neighborhood
size K is optimized, typical values are K = 200.

One possible explanation for the bad performance is that
predictions on new test samples are based on a weighted
average of the features of the training set, which are them-
selves predictions. KNN is not able to deliver a successful
blending model.

Bagging with Neural Networks, Polynomial Regression
and GBDT
In this experiment we train a large ensemble in order to ob-
tain extra accuracy. Bagging is applied on three different
blending models: polynomial regression, gradient boosted
decision trees, and neural networks. Table 7 shows the uti-
lized algorithms with their parameters. Simple linear regres-
sion is used to combine them.

The training is performed sequentially on models listed in
Table 7. As feedback for parameter selection we use linear
regression of the out-of-bag estimates (oob) of all predeces-
sors. When training the first model the linear regression of
the oob estimate and a constant is used as prediction. Pa-
rameter selection in the second model is performed with the
RMSE feedback of the linear regression of the oob estimates
from model 1, model 2 and a constant. This is called the
“blend RMSE” (numbers in brackets of the second column
in Table 7. Hence we select parameters based on the linear
combination of models.

Neural networks and gradient boosted decision trees were
explained above. Polynomial regression is a linear regression
with an extended feature space. The extension is done with
the help of a polynomial of order n with out cross interac-
tions between features, i.e., only single features xi are raised
to the powers of up to n.

The bagged ensemble reaches an RMSE of 0.87297 on the

model RMSE
(blend)

weight parameters

const. 1 - -0.014 -
NN 0.87345

(0.873445)

0.170 19-100-1, α = 3.6, β = 3.0, η =
5e−4, η(−) = 5e−7, 870 epochs,
44.4[h]

GBDT 0.874111
(0.873387)

0.054 S = 20, K = 50, η = 0.1, 226
epochs, randomSplitPoint, 6.6[h]

GBDT 0.874603
(0.873384)

0.098 S = 2, K = 300, η = 0.02, 267
epochs, optSplitPoint, 8.1[h]

PR 0.874358
(0.87336)

0.141 order=2, λ = 2.4e−6, with cross
interactions, 1.9[h]

PR 0.895951
(0.873351)

-0.033 order=3, λ = 0.054, no cross in-
teractions, 0.3[h]

NN 0.87345
(0.873296)

0.202 19-100-1, α = 2, β = 3.0, η =
5e−4, η(−) = 5e−7, 998 epochs,
47.1[h]

NN 0.873449
(0.873227)

0.371 19-50-30-1, α = 2, β = 3.0, η =
5e−4, η(−) = 5e−7, 952 epochs,
49.8[h]

blend 0.873227
pTest:0.87297

total train time: 158.2[h]
total prediction time 4.5[h]

Table 7: Bagging and linear combination of many
blending models applied to collaborative filtering for
the Netflix Prize dataset. The first column indicates
the model type. The second column reports the in-
dividual out-of-bag RMSE estimate, the number in
brackets below is the blend RMSE. The third col-
umn shows the weight of the model. The fourth col-
umn shows metaparameters and the training time
of each model. Accurate blending methods receive
higher weights. Nbag = 128 in all models.

pTest set. This is a significant improvement over the linear
regression baseline 0.87526.

Results on the Netflix qualifying set
The submission to the Netflix Prize contest and the leader-
board feedback was based on the qualifying set. It consists
of 2817131 ratings and has the same statistical properties
as the probe set. The RMSE on the qualifying set with the
linear regression model of Table 2 is 0.868088. This value is
much better compared to our pTest set RMSE of 0.87525,
because each collaborative filtering algorithm is retrained
on the ratings from the test set and the whole probe set
after the blending algorithm was trained [20]. For blending
with a neural network (19-30-1), this results in an RMSE of
0.866345 (prediction time 3[s]) on the qualifying set, com-
pare to Table 5. For bagging of many models (Table 7),
an RMSE of 0.866004 can be achieved on the qualifying set
(prediction time 17.8[h]). Further improvements can be ex-
pected when the blending models are trained on the whole
probe set. Here, all trained blending models are based on
data by a 50% random probe subset.

5. CONCLUSIONS
This paper demonstrates the advantage of ensemble learn-

ing applied to the combination (blending) of different collab-
orative filtering algorithms. As input we used 18 different
predictors. We divided the Netflix Prize probe set randomly
in two halves, a pTrain and a pTest set. The baseline is a reg-
ularized linear regression, which leads to an RMSE of 0.8752

on the pTest set. The best single blending algorithm is a 19-
30-1 neural network with an RMSE of 0.873365 on pTest.
We combined in an larger experiment neural networks, gra-
dient boosted decision trees and polynomial regression with
the help of bagging and optimized directly the linear re-
gression of the out-of-bag estimates. This results in RMSE
of 0.87297 on pTest, which improves linear regression by
0.0022. “The Ensemble” the second placed team of the Net-
flix prize competition reported a 0.0020 improvement over
linear regression baseline [17]. When we applied the blenders
to the predictions of the Netflix Prize qualifying set we found
that Linear regression leads to 0.868088 RMSE and the
bagged ensemble to 0.866004 RMSE (0.0021 improvement).
To summarize, we show an RMSE roadmap in Figure 5.
Above the RMSE scale one sees the best outcomes of the uti-
lized blending algorithms. The best individual collaborative
filtering results are indicated below the scale. The dataset
and the source code of the learning framework are freely
available under http://elf-project.sourceforge.net [9].

0.8900 0.8800 0.87000.9000

KNN-3SVD-3 SVD-4KNN-2

Linear Regression 0.87525

Neural Network 0.8732

BGBDT 0.87385

Bagging: PR+NN+BGBDT 0.87297

0.88710.89040.89700.9033

Figure 5: RMSE values on the Netflix Prize probe
set. Shown are various blending methods (above
the scale) and the best performing single algorithms
(below the scale).

For practical applications we recommend to use a neural
network in combination with bagging due to the fast pre-
diction speed. A set of 106 samples can be predicted in a
few seconds with this technique. We showed that a large
ensemble of different collaborative filtering models leads to
an accurate prediction system.

6. REFERENCES
[1] R. M. Bell and Y. Koren. Scalable collaborative

filtering with jointly derived neighborhood
interpolation weights. In ICDM ’07: Proceedings of the
2007 Seventh IEEE International Conference on Data
Mining, pages 43–52, Washington, DC, USA, 2007.
IEEE Computer Society.

[2] J. Bennet and S. Lanning. The netflix prize. KDD Cup
workshop, 2007. "http://www.netflixprize.com".

[3] L. Breiman. Bagging predictors. In Machine Learning,
pages 123–140, 1996.

[4] L. Breiman. Random forests. Machine Learning,
45:5–32, 2001.

[5] R. Caruana, A. Niculescu-Mizil, G. Crew, and
A. Ksikes. Ensemble selection from libraries of models.
In In Proceedings of the 21st International Conference
on Machine Learning, pages 137–144. ACM Press,
2004.

[6] D. A. Davis, N. V. Chawla, N. A. Christakis, and
A.-L. Barabási. Time to CARE: a collaborative engine
for practical disease prediction. Springer, November
2009.

[7] J. Friedman. Stochastic gradient boosting.
Computational Statistics and Data Analysis, 2002.

[8] P. Geurts, D. Ernst, and L. Wehenkel. Extremely
randomized trees. Mach. Learn., 63(1):3–42, 2006.

[9] M. Jahrer. ELF - Ensemble Learning Framework. An
open source C++ framework for supervised learning.
http://elf-project.sourceforge.net, 2010.

[10] Y. Koren. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In KDD
’08: Proceeding of the 14th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 426–434. ACM, 2008.

[11] Y. Koren. The BellKor solution to the Netflix Grand
Prize, 2009.

[12] Y. Koren. Collaborative filtering with temporal
dynamics. In KDD ’09: Proceeding of the 15th ACM
SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2009.

[13] Y. Koren. Factor in the neighbors: Scalable and
accurate collaborative filtering. In KDD: Proceedings
of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2009.

[14] A. Paterek. Improving regularized singular value
decomposition for collaborative filtering. Proceedings
of KDD Cup and Workshop, 2007.

[15] M. Piotte and M. Chabbert. The Pragmatic theory
solution to the Netflix Grand Prize, 2009.

[16] R. Salakhutdinov, A. Mnih, and G. E. Hinton.
Restricted boltzmann machines for collaborative
filtering. In ICML, pages 791–798, 2007.

[17] J. Sill, G. Takacs, L. Mackey, and D. Lin.
Feature-weighted linear stacking. arXiv:0911.0460v2,
2009.

[18] G. Takács, I. Pilászy, B. Németh, and D. Tikk. Matrix
factorization and neighbor based algorithms for the
netflix prize problem. In RecSys ’08: Proceedings of
the 2008 ACM conference on Recommender systems,
pages 267–274. ACM, 2008.

[19] A. Töscher and M. Jahrer. The BigChaos solution to
the Netflix Prize 2008. Technical report, commendo
research & consulting, October 2008.

[20] A. Töscher, M. Jahrer, and R. M. Bell. The BigChaos
solution to the Netflix Grand Prize, 2009.

[21] A. Töscher, M. Jahrer, and R. Legenstein. Improved
neighborhood-based algorithms for large-scale
recommender systems. In KDD Workshop at SIGKDD
08, August 2008.

