
Solution of the PAKDDCup 2010

Michael Jahrer
[team : mjahrer]

commendo research & consulting
8580 Köflach

Austria
michael.jahrer@ commendo.at

ABSTRACT
We present the solution for team mjahrer. The ELF[4]
project is used for training the prediction model. The fi-
nal solution is a linear combination of two models, kernel
ridge regression and gradient boosted decision trees. The
given dataset is transformed to a 5840-feature numeric ma-
trix by a simple encoding schema. The leaderboard AUC of
our solution is 0.6249, the internal cross-validation score is
0.6609.

Categories and Subject Descriptors
H.2.8 [Database Applications]: [Data mining, Ensemble
Learning]

Keywords
PAKDDCup, Supervised Learning, Ensemble Learning

1. INTRODUCTION

The data
The dataset stem from a Credit Risk Assessment System and
has both numerical and categorical features. We have 50000
labeled training samples and two unlabeled sets (20000 for
leaderboard feedback and 20000 for submission). Number of
raw features is 53, they consist of numerical and categorical
columns.

Transformation to numeric features
It is necessary to transform the categorical features into
numeric inputs because the used learners can handle only
dense numeric data. There are several features with constant
content (e.g. CLERK TYPE or EDUCATION LEVEL) we
skip them. And the first feature ID CLIENT is also skipped.
All numerical features fi are added as log(fi + 1). For cat-
egorical features we build a histogram and take the tokens
with an occurrence of larger equal 9 (simple one-hot encod-
ing). This value was determined by many trials on a vali-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PAKDD2010 Hyderabad, INDIA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

dation set. After the transformation of the 53 raw features
we end up with 5864 numerical features. This implies that
the training feature matrix has a size of 50000x5864. We do
nothing special with the data (no feature selection, no data
cleaning, etc.).

Normalization of the features
We shift and scale every numeric feature to be in the [0...1]
range.

The targets
This supervised problem has two different class labels,
”BAD” or ”GOOD”. A good customer is able to pay his
credit rates within a 60-day period. Target proportion is
26.082% (BAD) to 73.918% (GOOD).

Error function
Goal is to maximize the AUC on a test dataset. We op-
timize a linear combination of two algorithms in order to
perform best on cross-validation. The linear combination
was calculated by linear regression.

Model validation
Cross validation is used to do parameter selection of the
learning models. We use 12-fold cross validation in our mod-
els. At the end of the parameter selection process, the model
was re-trained on the whole training set in order to use all
available data.

2. PREDICTION MODEL
We tried different models on the PAKDD2010 dataset.

Our findings was that a k-nearest neighbor algorithm with
euclidean distance measure does not work. Linear regres-
sion, kernel ridge regression, neural networks and gradient
boosted decision trees gives good results. The most promis-
ing model is the kernel ridge regression algorithm because it
shows the highest AUC score on the cross-validation set. At
the end we combine two algorithms by using optimal linear
combination.

Kernel Ridge Regression
The kernel ridge regression is a simple but computation ex-
pensive algorithm, because the matrix-inversion of the full
gram matrix is costly (size NxN , where N = 50000). For
the algorithm implementation see [3]. We use the gauss ker-

nel (or RBF kernel) k(a,b) = e
||a−b||

σ2 . The kernel width
is σ. As regularization we use ridge regression, controlled

by the parameter λ. The start values are σ = 100 and
λ = 1e − 6. We search for 50 epochs by using structured
coordinate search.

Gradient Boosted Decision Tree
The algorithm is explained in detail by J. Friedman [1] [2].
Gradient boosting works epoch-wise, where only a fraction
of the data is learned in an epoch. The learning rate for
gradient boosting is η. Per split in the tree we consider K
features (random subspace idea). Per epoch a tree is limited
in the number of leafs, we allow S leafs in a tree. We train
a minimum number of Nepoch, avoiding to stop the learning
in the first local minima.

Combination
Two models are trained one after another. Firstly, the ker-
nel ridge regression model is optimized in order to have the
largest AUC score on the cross-validation set. Then we stop
learning the gradient boosted decision tree when the linear
combination of both models becomes maximal in terms of
AUC. The linear combination is calculated with ridge re-
gression.

3. RESULTS

model AUC
(blend)

RMSE
(blend)

ACC
(blend)

parameters, train time

KRR 0.6600 0.85123 25.97% σ = 10.1, λ = 4.4e−05,
2.07[h]

GBDT 0.6609 0.85094 25.95% K = 100, S = 100, η =
0.005, Nepoch = 1500,
72.4[h]

Table 1: Results of the two-model combination on
the PAKDDCup2010 dataset. We report the AUC,
RMSE and the accuracy (classification error) on a
12-fold cross-validation set.

The leaderboard score of our solution is 0.6249. It takes
1.8[h] to generate the leaderboard predictions. Blending
weights of the final solution are: output = 0.8 · KRR +
0.23 ·GBDT .

4. USED SOFTWARE
For the complete supervised learning process, including

the data preprocessing, we used the ELF project [4]. The
learning framework is freely available online, including a
setup for reading, training and predicting the data from the
PAKDDCup 2010.

5. REFERENCES
[1] J. Friedman. Greedy function approximation: A

gradient boosting machine. Technical report, Salford
Systems, 1999.

[2] J. Friedman. Stochastic gradient boosting.
Computational Statistics and Data Analysis, 2002.

[3] I. Guyon. Kernel Ridge Regression tutorial, accessed
Aug 31, 2009. http://clopinet.com/isabelle/
Projects/ETH/KernelRidge.pdf.

[4] M. Jahrer. ELF - Ensemble Learning Framework. An
open source C++ framework for supervised learning.
http://elf-project.sourceforge.net, 2010.

APPENDIX

Here are the configuration files for reproducing the results.

A. MASTER DSC FILE

dataset=PAKDDCup2010

isClassificationDataset=1

maxThreads=4

maxThreadsInCross=1

nCrossValidation=12

#validationType=CrossFoldMean

validationType=Retraining

#validationType=Bagging

positiveTarget=1.0

negativeTarget=-1.0

#negativeTarget=0.0

randomSeed=1234

nMixDataset=50

nMixTrainList=1000

standardDeviationMin=0.01

blendingRegularization=1e-5

blendingEnableCrossValidation=0

blendingAlgorithm=LinearRegression

enablePostNNBlending=0

enableCascadeLearning=0

enableGlobalMeanStdEstimate=0

enableSaveMemory=1

addOutputNoise=0

enablePostBlendClipping=0

enableFeatureSelection=0

featureSelectionWriteBinaryDataset=0

enableGlobalBlendingWeights=0

errorFunction=AUC

disableWriteDscFile=1

enableStaticNormalization=0

#staticMeanNormalization=0.0

#staticStdNormalization=1.0

#dimensionalityReduction=Autoencoder

enableProbablisticNormalization=1

addAutoencoderFeatures=0

subsampleTrainSet=1.0

subsampleFeatures=1.0

globalTrainingLoops=1

addConstantInput=1

gradientBoostingMaxEpochs=1

gradientBoostingLearnrate=1.0

[ALGORITHMS]

#LinearModel_1.dsc

#PolynomialRegression_1.dsc

#NeuralNetwork_1.dsc

#KNearestNeighbor_1.dsc

KernelRidgeRegression_1.dsc

GBDT_1.dsc

#NeuralNetwork_1.dsc

Table 2: Master configuration of the ELF.

B. KRR DSC FILE

ALGORITHM=KernelRidgeRegression

ID=1

#TRAIN_ON_FULLPREDICTOR=LinearModel_1.dat

DISABLE=0

enableProbablisticNormalization=1

[int]

maxTuninigEpochs=1

[double]

initMaxSwing=0.5

initReg=4.41051e-05

polyScaleInit=3.0

polyBiasPosInit=0.5

polyBiasNegInit=0.1

polyPowerInit=4.0

gaussSigmaInit=10.1148

tanhScaleInit=0.5

tanhBiasPosInit=0.5

tanhBiasNegInit=0.5

[bool]

enableClipping=0

enableTuneSwing=0

minimzeProbe=0

minimzeProbeClassificationError=0

minimzeBlend=1

minimzeBlendClassificationError=0

[string]

kernelType=Gauss

weightFile=KernelRidgeRegression_1_weights.dat

fullPrediction=KernelRidgeRegression_1.dat

Table 3: KRR configuration.

C. GBDT DSC FILE

ALGORITHM=GBDT

ID=2

#TRAIN_ON_FULLPREDICTOR=LinearModel_1.dat

DISABLE=0

[int]

minTuninigEpochs=1500

maxTuninigEpochs=2000

featureSubspaceSize=100

maxTreeLeafes=100

[double]

initMaxSwing=1.0

lRate=0.005

[bool]

calculateGlobalMean=1

useOptSplitPoint=1

enableClipping=0

enableTuneSwing=0

minimize probe/blend RMSE

minimzeProbe=0

minimzeProbeClassificationError=0

minimzeBlend=1

minimzeBlendClassificationError=0

[string]

weightFile=GBDT_1_weights.dat

fullPrediction=GBDT_1.dat

Table 4: GBDT configuration.

