, including all inherited members.
addConstantInput() | Data | |
Algorithm() | Algorithm | |
allocMemForCrossValidationSets() | Data | |
baggingRandomSeed(uint seed) | Data | |
BlendStopping (defined in Algorithm) | Algorithm | [friend] |
calcRMSEonBlend()=0 (defined in Algorithm) | Algorithm | [pure virtual] |
calcRMSEonProbe()=0 (defined in Algorithm) | Algorithm | [pure virtual] |
clipValue(REAL input, REAL low, REAL high) | Algorithm | |
Framework::convertDateToInt(uint day, uint month, uint year, uint hour, uint minute, uint second) | Framework | [static] |
Data::convertDateToInt(uint day, uint month, uint year, uint hour, uint minute, uint second) | Framework | [static] |
Framework::convertIntToDate(uint date, uint &day, uint &month, uint &year, uint &hour, uint &minute, uint &second, uint &weekday) | Framework | [static] |
Data::convertIntToDate(uint date, uint &day, uint &month, uint &year, uint &hour, uint &minute, uint &second, uint &weekday) | Framework | [static] |
Data() | Data | |
deleteMemory() | Data | |
doBootstrapSampling(REAL *probs, REAL *&train, REAL *&target, REAL *&targetEff, REAL *&targetRes, int *&label, int nTrainNew=0) | Data | |
doFeatureSelection() | Data | |
enableBagging(bool en) | Data | |
extendTrainDataWithCascadeInputs() | Data | |
fillCascadeLearningInputs() | Data | |
fillNCrossValidationSet(int n) | Data | |
Framework::Framework() | Framework | |
Data::Framework() | Framework | |
freeNCrossValidationSet(int n) | Data | |
Framework::getAdditionalStartupParameter() | Framework | [static] |
Data::getAdditionalStartupParameter() | Framework | [static] |
Framework::getDatasetType() | Framework | [static] |
Data::getDatasetType() | Framework | [static] |
getDirectoryFileList(string path) | Data | [static] |
Framework::getFrameworkMode() | Framework | [static] |
Data::getFrameworkMode() | Framework | [static] |
Framework::getMaxThreads() | Framework | [static] |
Data::getMaxThreads() | Framework | [static] |
Framework::getRandomSeed() | Framework | [static] |
Data::getRandomSeed() | Framework | [static] |
loadFeatureSelectionFile() (defined in Data) | Data | |
loadNormalization(int nCascade=0) | Data | |
m_addConstantInput (defined in Data) | Data | [protected] |
m_addOutputNoise (defined in Data) | Data | [protected] |
m_algorithmID (defined in Data) | Data | [protected] |
m_algorithmName (defined in Data) | Data | [protected] |
m_algorithmNameList (defined in Data) | Data | [protected] |
m_blendingAlgorithm (defined in Data) | Data | [protected] |
m_blendingEnableCrossValidation (defined in Data) | Data | [protected] |
m_blendingRegularization (defined in Data) | Data | [protected] |
m_boolMap (defined in Data) | Data | [protected] |
m_cascadeInputs (defined in Data) | Data | [protected] |
m_crossIndex (defined in Data) | Data | [protected] |
m_dataPath (defined in Data) | Data | [protected] |
m_datasetName (defined in Data) | Data | [protected] |
m_datasetPath (defined in Data) | Data | [protected] |
m_dimensionalityReduction (defined in Data) | Data | [protected] |
m_disableTraining (defined in Data) | Data | [protected] |
m_disableWriteDscFile (defined in Data) | Data | [protected] |
m_doubleMap (defined in Data) | Data | [protected] |
m_dscPath (defined in Data) | Data | [protected] |
m_enableBagging (defined in Data) | Data | [protected] |
m_enableCascadeLearning (defined in Data) | Data | [protected] |
m_enableFeatureSelection (defined in Data) | Data | [protected] |
m_enableGlobalBlendingWeights (defined in Data) | Data | [protected] |
m_enableGlobalMeanStdEstimate (defined in Data) | Data | [protected] |
m_enablePostBlendClipping (defined in Data) | Data | [protected] |
m_enablePostNNBlending (defined in Data) | Data | [protected] |
m_enableProbablisticNormalization (defined in Data) | Data | [protected] |
m_enableSaveMemory (defined in Data) | Data | [protected] |
m_enableStaticNormalization (defined in Data) | Data | [protected] |
m_errorFunction (defined in Data) | Data | [protected] |
m_featureSelectionWriteBinaryDataset (defined in Data) | Data | [protected] |
m_fullPredPath (defined in Data) | Data | [protected] |
m_globalTrainingLoops (defined in Data) | Data | [protected] |
m_inRetraining (defined in Algorithm) | Algorithm | |
m_intMap (defined in Data) | Data | [protected] |
m_loadWeightsBeforeTraining (defined in Data) | Data | [protected] |
m_maxThreadsInCross (defined in Data) | Data | [protected] |
m_mean (defined in Data) | Data | [protected] |
m_mixDatasetIndices (defined in Data) | Data | [protected] |
m_mixList (defined in Data) | Data | [protected] |
m_nCascadeInputs (defined in Data) | Data | [protected] |
m_nClass (defined in Data) | Data | [protected] |
m_nCross (defined in Data) | Data | [protected] |
m_nDomain (defined in Data) | Data | [protected] |
m_negativeTarget (defined in Data) | Data | [protected] |
m_nFeatures (defined in Data) | Data | [protected] |
m_nMixDataset (defined in Data) | Data | [protected] |
m_nMixTrainList (defined in Data) | Data | [protected] |
m_nTest (defined in Data) | Data | [protected] |
m_nTrain (defined in Data) | Data | [protected] |
m_positiveTarget (defined in Data) | Data | [protected] |
m_probe (defined in Data) | Data | [protected] |
m_probeIndex (defined in Data) | Data | [protected] |
m_probeLabel (defined in Data) | Data | [protected] |
m_probeSize (defined in Data) | Data | [protected] |
m_probeTarget (defined in Data) | Data | [protected] |
m_probeTargetEffect (defined in Data) | Data | [protected] |
m_probeTargetResidual (defined in Data) | Data | [protected] |
m_randomSeedBagging (defined in Data) | Data | [protected] |
m_randSeed (defined in Data) | Data | [protected] |
m_slotBoundaries (defined in Data) | Data | [protected] |
m_standardDeviationMin (defined in Data) | Data | [protected] |
m_staticMeanNormalization (defined in Data) | Data | [protected] |
m_staticStdNormalization (defined in Data) | Data | [protected] |
m_std (defined in Data) | Data | [protected] |
m_stringMap (defined in Data) | Data | [protected] |
m_subsampleFeatures (defined in Data) | Data | [protected] |
m_subsampleTrainSet (defined in Data) | Data | [protected] |
m_support (defined in Data) | Data | [protected] |
m_targetMean (defined in Data) | Data | [protected] |
m_tempPath (defined in Data) | Data | [protected] |
m_testLabelOrig (defined in Data) | Data | [protected] |
m_testOrig (defined in Data) | Data | [protected] |
m_testTargetOrig (defined in Data) | Data | [protected] |
m_train (defined in Data) | Data | [protected] |
m_trainBaggingIndex (defined in Data) | Data | [protected] |
m_trainLabel (defined in Data) | Data | [protected] |
m_trainLabelOrig (defined in Data) | Data | [protected] |
m_trainOnFullPredictorFile (defined in Data) | Data | [protected] |
m_trainOrig (defined in Data) | Data | [protected] |
m_trainSize (defined in Data) | Data | [protected] |
m_trainTarget (defined in Data) | Data | [protected] |
m_trainTargetEffect (defined in Data) | Data | [protected] |
m_trainTargetOrig (defined in Data) | Data | [protected] |
m_trainTargetOrigEffect (defined in Data) | Data | [protected] |
m_trainTargetOrigResidual (defined in Data) | Data | [protected] |
m_trainTargetResidual (defined in Data) | Data | [protected] |
m_valid (defined in Data) | Data | [protected] |
m_validationType (defined in Data) | Data | [protected] |
m_validLabel (defined in Data) | Data | [protected] |
m_validSize (defined in Data) | Data | [protected] |
m_validTarget (defined in Data) | Data | [protected] |
makeBinaryDataset() | Data | |
mergeTrainAndTest() | Data | |
mixDataset() | Data | |
normalizeZeroOne() | Data | |
partitionDatasetToCrossValidationSets() | Data | |
predictMultipleOutputs(REAL *rawInput, REAL *effect, REAL *output, int *label, int nSamples, int crossRun)=0 (defined in Algorithm) | Algorithm | [pure virtual] |
readDataset(string name) | Data | |
readDscFile(string name) | Data | |
readEffectFile() | Data | |
readParameter(string line, int mode) | Data | |
reduceFeatureSize(REAL *&table, int tableRows, int &tableCols, REAL percent, bool loadColumnSet) | Data | |
reduceTrainingSetSize(REAL percent) | Data | |
saveFeatureSelectionFile() (defined in Data) | Data | |
Framework::setAdditionalStartupParameter(char *s) | Framework | [static] |
Data::setAdditionalStartupParameter(char *s) | Framework | [static] |
setAlgorithmList(vector< string > m_algorithmNameList) | Data | |
setDataPointers(Data *data) | Data | |
Framework::setDatasetType(bool isClassification) | Framework | [static] |
Data::setDatasetType(bool isClassification) | Framework | [static] |
Framework::setFrameworkMode(int mode) | Framework | [static] |
Data::setFrameworkMode(int mode) | Framework | [static] |
Framework::setMaxThreads(int n) | Framework | [static] |
Data::setMaxThreads(int n) | Framework | [static] |
setPathes(string temp, string dsc, string fullPred, string data) | Data | |
setPredictionMode(int cross)=0 (defined in Algorithm) | Algorithm | [pure virtual] |
Framework::setRandomSeed(int n) | Framework | [static] |
Data::setRandomSeed(int n) | Framework | [static] |
splitStringToIntegerList(string str, char delimiter) | Data | [static] |
splitStringToStringList(string str, char delimiter) | Data | [static] |
train()=0 (defined in Algorithm) | Algorithm | [pure virtual] |
vectorSampling(REAL *probs, int length) | Data | |
~Algorithm() | Algorithm | [virtual] |
~Data() | Data | [virtual] |
Framework::~Framework() | Framework | |
Data::~Framework() | Framework | |