, including all inherited members.
  | backprop(REAL *input, REAL *target) | NN |  [private] | 
  | backpropBLAS(REAL *input, REAL *target) | NN |  [private] | 
  | calcRMSE(REAL *inputs, REAL *targets, int examples) | NN |  [private] | 
  | convertDateToInt(uint day, uint month, uint year, uint hour, uint minute, uint second) | Framework |  [static] | 
  | convertIntToDate(uint date, uint &day, uint &month, uint &year, uint &hour, uint &minute, uint &second, uint &weekday) | Framework |  [static] | 
  | enableErrorFunctionMAE(bool en) | NN |  | 
  | enableRPROP(bool en) | NN |  | 
  | forwardCalculation(REAL *input) | NN |  [private] | 
  | forwardCalculationBLAS(REAL *input) | NN |  [private] | 
  | Framework() | Framework |  | 
  | getAdditionalStartupParameter() | Framework |  [static] | 
  | getBiasIndex(int layer, int neuron) | NN |  | 
  | getDatasetType() | Framework |  [static] | 
  | getFrameworkMode() | Framework |  [static] | 
  | getInitWeight(int fanIn) | NN |  [private] | 
  | getMaxThreads() | Framework |  [static] | 
  | getNrWeights() | NN |  | 
  | getOutputIndex(int layer, int neuron) | NN |  | 
  | getRandomSeed() | Framework |  [static] | 
  | getRMSEProbe() | NN |  | 
  | getRMSETrain() | NN |  | 
  | getWeightIndex(int layer, int neuron, int weight) | NN |  | 
  | getWeightPtr() | NN |  | 
  | initNNWeights(time_t seed) | NN |  | 
  | m_activationFunctionType (defined in NN) | NN |  [private] | 
  | m_adaptiveRPROPlRate (defined in NN) | NN |  [private] | 
  | m_batchSize (defined in NN) | NN |  [private] | 
  | m_d1 (defined in NN) | NN |  [private] | 
  | m_deltaW (defined in NN) | NN |  [private] | 
  | m_deltaWOld (defined in NN) | NN |  [private] | 
  | m_derivates (defined in NN) | NN |  [private] | 
  | m_enableL1Regularization (defined in NN) | NN |  [private] | 
  | m_enableRPROP (defined in NN) | NN |  [private] | 
  | m_errorFunctionMAE (defined in NN) | NN |  [private] | 
  | m_globalEpochs (defined in NN) | NN |  [private] | 
  | m_initWeightFactor (defined in NN) | NN |  [private] | 
  | m_inputsProbe (defined in NN) | NN |  [private] | 
  | m_inputsTrain (defined in NN) | NN |  [private] | 
  | m_learnRate (defined in NN) | NN |  [private] | 
  | m_learnrateDecreaseRate (defined in NN) | NN |  [private] | 
  | m_learnrateDecreaseRateEpoch (defined in NN) | NN |  [private] | 
  | m_learnRateMin (defined in NN) | NN |  [private] | 
  | m_maxEpochs (defined in NN) | NN |  [private] | 
  | m_minUpdateBound (defined in NN) | NN |  [private] | 
  | m_momentum (defined in NN) | NN |  [private] | 
  | m_neuronsPerLayer (defined in NN) | NN |  [private] | 
  | m_normalTrainStopping (defined in NN) | NN |  [private] | 
  | m_nrExamplesProbe (defined in NN) | NN |  [private] | 
  | m_nrExamplesTrain (defined in NN) | NN |  [private] | 
  | m_nrInputs (defined in NN) | NN |  [private] | 
  | m_nrLayer (defined in NN) | NN |  [private] | 
  | m_nrLayWeightOffsets (defined in NN) | NN |  [private] | 
  | m_nrLayWeights (defined in NN) | NN |  [private] | 
  | m_nrOutputs (defined in NN) | NN |  [private] | 
  | m_nrTargets (defined in NN) | NN |  [private] | 
  | m_nrWeights (defined in NN) | NN |  [private] | 
  | m_offsetOutputs (defined in NN) | NN |  [private] | 
  | m_outputs (defined in NN) | NN |  [private] | 
  | m_outputsTmp (defined in NN) | NN |  [private] | 
  | m_RPROP_etaNeg (defined in NN) | NN |  [private] | 
  | m_RPROP_etaPos (defined in NN) | NN |  [private] | 
  | m_RPROP_updateMax (defined in NN) | NN |  [private] | 
  | m_RPROP_updateMin (defined in NN) | NN |  [private] | 
  | m_scaleOutputs (defined in NN) | NN |  [private] | 
  | m_sumSquaredError (defined in NN) | NN |  | 
  | m_sumSquaredErrorSamples (defined in NN) | NN |  | 
  | m_targetsProbe (defined in NN) | NN |  [private] | 
  | m_targetsTrain (defined in NN) | NN |  [private] | 
  | m_useBLAS (defined in NN) | NN |  [private] | 
  | m_weightDecay (defined in NN) | NN |  [private] | 
  | m_weights (defined in NN) | NN |  [private] | 
  | m_weightsBatchUpdate (defined in NN) | NN |  [private] | 
  | m_weightsOld (defined in NN) | NN |  [private] | 
  | m_weightsOldOld (defined in NN) | NN |  [private] | 
  | m_weightsTmp0 (defined in NN) | NN |  [private] | 
  | m_weightsTmp1 (defined in NN) | NN |  [private] | 
  | m_weightsTmp2 (defined in NN) | NN |  [private] | 
  | NN() | NN |  | 
  | predictSingleInput(REAL *input, REAL *output) | NN |  | 
  | printLearnrate() | NN |  | 
  | saveWeights() | NN |  [private] | 
  | setActivationFunctionType(int type) | NN |  | 
  | setAdditionalStartupParameter(char *s) | Framework |  [static] | 
  | setBatchSize(int size) | NN |  | 
  | setDatasetType(bool isClassification) | Framework |  [static] | 
  | setFrameworkMode(int mode) | Framework |  [static] | 
  | setGlobalEpochs(int e) | NN |  | 
  | setInitWeightFactor(REAL factor) | NN |  | 
  | setL1Regularization(bool en) | NN |  | 
  | setLearnrate(REAL learnrate) | NN |  | 
  | setLearnrateMinimum(REAL learnrateMin) | NN |  | 
  | setLearnrateSubtractionValueAfterEveryEpoch(REAL learnrateDecreaseRate) | NN |  | 
  | setLearnrateSubtractionValueAfterEverySample(REAL learnrateDecreaseRate) | NN |  | 
  | setMaxEpochs(int epochs) | NN |  | 
  | setMaxThreads(int n) | Framework |  [static] | 
  | setMinUpdateErrorBound(REAL minUpdateBound) | NN |  | 
  | setMomentum(REAL momentum) | NN |  | 
  | setNNStructure(int nrLayer, int *neuronsPerLayer) | NN |  | 
  | setNormalTrainStopping(bool en) | NN |  | 
  | setNrExamplesProbe(int n) | NN |  | 
  | setNrExamplesTrain(int n) | NN |  | 
  | setNrInputs(int n) | NN |  | 
  | setNrTargets(int n) | NN |  | 
  | setProbeInputs(REAL *inputs) | NN |  | 
  | setProbeTargets(REAL *targets) | NN |  | 
  | setRandomSeed(int n) | Framework |  [static] | 
  | setRPROPMinMaxUpdate(REAL min, REAL max) | NN |  | 
  | setRPROPPosNeg(REAL etaPos, REAL etaNeg) | NN |  | 
  | setScaleOffset(REAL scale, REAL offset) | NN |  | 
  | setTrainInputs(REAL *inputs) | NN |  | 
  | setTrainTargets(REAL *targets) | NN |  | 
  | setWeightDecay(REAL weightDecay) | NN |  | 
  | setWeights(REAL *w) | NN |  | 
  | trainNN() | NN |  | 
  | trainOneEpoch() | NN |  | 
  | useBLASforTraining(bool enable) | NN |  | 
  | ~Framework() | Framework |  | 
  | ~NN() | NN |  |