, including all inherited members.
backprop(REAL *input, REAL *target) | NN | [private] |
backpropBLAS(REAL *input, REAL *target) | NN | [private] |
calcRMSE(REAL *inputs, REAL *targets, int examples) | NN | [private] |
convertDateToInt(uint day, uint month, uint year, uint hour, uint minute, uint second) | Framework | [static] |
convertIntToDate(uint date, uint &day, uint &month, uint &year, uint &hour, uint &minute, uint &second, uint &weekday) | Framework | [static] |
enableErrorFunctionMAE(bool en) | NN | |
enableRPROP(bool en) | NN | |
forwardCalculation(REAL *input) | NN | [private] |
forwardCalculationBLAS(REAL *input) | NN | [private] |
Framework() | Framework | |
getAdditionalStartupParameter() | Framework | [static] |
getBiasIndex(int layer, int neuron) | NN | |
getDatasetType() | Framework | [static] |
getFrameworkMode() | Framework | [static] |
getInitWeight(int fanIn) | NN | [private] |
getMaxThreads() | Framework | [static] |
getNrWeights() | NN | |
getOutputIndex(int layer, int neuron) | NN | |
getRandomSeed() | Framework | [static] |
getRMSEProbe() | NN | |
getRMSETrain() | NN | |
getWeightIndex(int layer, int neuron, int weight) | NN | |
getWeightPtr() | NN | |
initNNWeights(time_t seed) | NN | |
m_activationFunctionType (defined in NN) | NN | [private] |
m_adaptiveRPROPlRate (defined in NN) | NN | [private] |
m_batchSize (defined in NN) | NN | [private] |
m_d1 (defined in NN) | NN | [private] |
m_deltaW (defined in NN) | NN | [private] |
m_deltaWOld (defined in NN) | NN | [private] |
m_derivates (defined in NN) | NN | [private] |
m_enableL1Regularization (defined in NN) | NN | [private] |
m_enableRPROP (defined in NN) | NN | [private] |
m_errorFunctionMAE (defined in NN) | NN | [private] |
m_globalEpochs (defined in NN) | NN | [private] |
m_initWeightFactor (defined in NN) | NN | [private] |
m_inputsProbe (defined in NN) | NN | [private] |
m_inputsTrain (defined in NN) | NN | [private] |
m_learnRate (defined in NN) | NN | [private] |
m_learnrateDecreaseRate (defined in NN) | NN | [private] |
m_learnrateDecreaseRateEpoch (defined in NN) | NN | [private] |
m_learnRateMin (defined in NN) | NN | [private] |
m_maxEpochs (defined in NN) | NN | [private] |
m_minUpdateBound (defined in NN) | NN | [private] |
m_momentum (defined in NN) | NN | [private] |
m_neuronsPerLayer (defined in NN) | NN | [private] |
m_normalTrainStopping (defined in NN) | NN | [private] |
m_nrExamplesProbe (defined in NN) | NN | [private] |
m_nrExamplesTrain (defined in NN) | NN | [private] |
m_nrInputs (defined in NN) | NN | [private] |
m_nrLayer (defined in NN) | NN | [private] |
m_nrLayWeightOffsets (defined in NN) | NN | [private] |
m_nrLayWeights (defined in NN) | NN | [private] |
m_nrOutputs (defined in NN) | NN | [private] |
m_nrTargets (defined in NN) | NN | [private] |
m_nrWeights (defined in NN) | NN | [private] |
m_offsetOutputs (defined in NN) | NN | [private] |
m_outputs (defined in NN) | NN | [private] |
m_outputsTmp (defined in NN) | NN | [private] |
m_RPROP_etaNeg (defined in NN) | NN | [private] |
m_RPROP_etaPos (defined in NN) | NN | [private] |
m_RPROP_updateMax (defined in NN) | NN | [private] |
m_RPROP_updateMin (defined in NN) | NN | [private] |
m_scaleOutputs (defined in NN) | NN | [private] |
m_sumSquaredError (defined in NN) | NN | |
m_sumSquaredErrorSamples (defined in NN) | NN | |
m_targetsProbe (defined in NN) | NN | [private] |
m_targetsTrain (defined in NN) | NN | [private] |
m_useBLAS (defined in NN) | NN | [private] |
m_weightDecay (defined in NN) | NN | [private] |
m_weights (defined in NN) | NN | [private] |
m_weightsBatchUpdate (defined in NN) | NN | [private] |
m_weightsOld (defined in NN) | NN | [private] |
m_weightsOldOld (defined in NN) | NN | [private] |
m_weightsTmp0 (defined in NN) | NN | [private] |
m_weightsTmp1 (defined in NN) | NN | [private] |
m_weightsTmp2 (defined in NN) | NN | [private] |
NN() | NN | |
predictSingleInput(REAL *input, REAL *output) | NN | |
printLearnrate() | NN | |
saveWeights() | NN | [private] |
setActivationFunctionType(int type) | NN | |
setAdditionalStartupParameter(char *s) | Framework | [static] |
setBatchSize(int size) | NN | |
setDatasetType(bool isClassification) | Framework | [static] |
setFrameworkMode(int mode) | Framework | [static] |
setGlobalEpochs(int e) | NN | |
setInitWeightFactor(REAL factor) | NN | |
setL1Regularization(bool en) | NN | |
setLearnrate(REAL learnrate) | NN | |
setLearnrateMinimum(REAL learnrateMin) | NN | |
setLearnrateSubtractionValueAfterEveryEpoch(REAL learnrateDecreaseRate) | NN | |
setLearnrateSubtractionValueAfterEverySample(REAL learnrateDecreaseRate) | NN | |
setMaxEpochs(int epochs) | NN | |
setMaxThreads(int n) | Framework | [static] |
setMinUpdateErrorBound(REAL minUpdateBound) | NN | |
setMomentum(REAL momentum) | NN | |
setNNStructure(int nrLayer, int *neuronsPerLayer) | NN | |
setNormalTrainStopping(bool en) | NN | |
setNrExamplesProbe(int n) | NN | |
setNrExamplesTrain(int n) | NN | |
setNrInputs(int n) | NN | |
setNrTargets(int n) | NN | |
setProbeInputs(REAL *inputs) | NN | |
setProbeTargets(REAL *targets) | NN | |
setRandomSeed(int n) | Framework | [static] |
setRPROPMinMaxUpdate(REAL min, REAL max) | NN | |
setRPROPPosNeg(REAL etaPos, REAL etaNeg) | NN | |
setScaleOffset(REAL scale, REAL offset) | NN | |
setTrainInputs(REAL *inputs) | NN | |
setTrainTargets(REAL *targets) | NN | |
setWeightDecay(REAL weightDecay) | NN | |
setWeights(REAL *w) | NN | |
trainNN() | NN | |
trainOneEpoch() | NN | |
useBLASforTraining(bool enable) | NN | |
~Framework() | Framework | |
~NN() | NN | |