backprop(REAL *input, REAL *target, bool *updateLayer=0) | NNRBM | [private] |
backpropBLAS(REAL *input, REAL *target, bool *updateLayer=0) | NNRBM | [private] |
calcRMSE(REAL *inputs, REAL *targets, int examples) | NNRBM | [private] |
convertDateToInt(uint day, uint month, uint year, uint hour, uint minute, uint second) | Framework | [static] |
convertIntToDate(uint date, uint &day, uint &month, uint &year, uint &hour, uint &minute, uint &second, uint &weekday) | Framework | [static] |
enableErrorFunctionMAE(bool en) | NNRBM | |
enableRPROP(bool en) | NNRBM | |
forwardCalculation(REAL *input) | NNRBM | [private] |
forwardCalculationBLAS(REAL *input) | NNRBM | [private] |
Framework() | Framework | |
getAdditionalStartupParameter() | Framework | [static] |
getBiasIndex(int layer, int neuron) | NNRBM | |
getDatasetType() | Framework | [static] |
getEncoder() | NNRBM | |
getFrameworkMode() | Framework | [static] |
getInitWeight(int fanIn) | NNRBM | [private] |
getMaxThreads() | Framework | [static] |
getNrWeights() | NNRBM | |
getOutputIndex(int layer, int neuron) | NNRBM | |
getRandomSeed() | Framework | [static] |
getRMSEProbe() | NNRBM | |
getRMSETrain() | NNRBM | |
getWeightIndex(int layer, int neuron, int weight) | NNRBM | |
getWeightPtr() | NNRBM | |
initNNWeights(time_t seed) | NNRBM | |
m_activationFunctionPerLayer (defined in NNRBM) | NNRBM | [private] |
m_adaptiveRPROPlRate (defined in NNRBM) | NNRBM | [private] |
m_batchSize (defined in NNRBM) | NNRBM | [private] |
m_d1 (defined in NNRBM) | NNRBM | [private] |
m_deltaW (defined in NNRBM) | NNRBM | [private] |
m_deltaWOld (defined in NNRBM) | NNRBM | [private] |
m_derivates (defined in NNRBM) | NNRBM | [private] |
m_enableAutoencoder (defined in NNRBM) | NNRBM | [private] |
m_enableL1Regularization (defined in NNRBM) | NNRBM | [private] |
m_enableRPROP (defined in NNRBM) | NNRBM | [private] |
m_errorFunctionMAE (defined in NNRBM) | NNRBM | [private] |
m_globalEpochs (defined in NNRBM) | NNRBM | [private] |
m_initWeightFactor (defined in NNRBM) | NNRBM | [private] |
m_inputsProbe (defined in NNRBM) | NNRBM | [private] |
m_inputsTrain (defined in NNRBM) | NNRBM | [private] |
m_learnRate (defined in NNRBM) | NNRBM | [private] |
m_learnrateDecreaseRate (defined in NNRBM) | NNRBM | [private] |
m_learnrateDecreaseRateEpoch (defined in NNRBM) | NNRBM | [private] |
m_learnRateMin (defined in NNRBM) | NNRBM | [private] |
m_maxEpochs (defined in NNRBM) | NNRBM | [private] |
m_minUpdateBound (defined in NNRBM) | NNRBM | [private] |
m_momentum (defined in NNRBM) | NNRBM | [private] |
m_neuronsPerLayer (defined in NNRBM) | NNRBM | [private] |
m_nnAuto (defined in NNRBM) | NNRBM | |
m_normalTrainStopping (defined in NNRBM) | NNRBM | [private] |
m_nrExamplesProbe (defined in NNRBM) | NNRBM | [private] |
m_nrExamplesTrain (defined in NNRBM) | NNRBM | [private] |
m_nrInputs (defined in NNRBM) | NNRBM | [private] |
m_nrLayer (defined in NNRBM) | NNRBM | [private] |
m_nrLayWeightOffsets (defined in NNRBM) | NNRBM | [private] |
m_nrLayWeights (defined in NNRBM) | NNRBM | [private] |
m_nrOutputs (defined in NNRBM) | NNRBM | [private] |
m_nrTargets (defined in NNRBM) | NNRBM | [private] |
m_nrWeights (defined in NNRBM) | NNRBM | [private] |
m_offsetOutputs (defined in NNRBM) | NNRBM | [private] |
m_outputs (defined in NNRBM) | NNRBM | [private] |
m_outputsTmp (defined in NNRBM) | NNRBM | [private] |
m_rbmLearnrateBiasHid (defined in NNRBM) | NNRBM | [private] |
m_rbmLearnrateBiasVis (defined in NNRBM) | NNRBM | [private] |
m_rbmLearnrateWeights (defined in NNRBM) | NNRBM | [private] |
m_rbmMaxEpochs (defined in NNRBM) | NNRBM | [private] |
m_rbmWeightDecay (defined in NNRBM) | NNRBM | [private] |
m_RPROP_etaNeg (defined in NNRBM) | NNRBM | [private] |
m_RPROP_etaPos (defined in NNRBM) | NNRBM | [private] |
m_RPROP_updateMax (defined in NNRBM) | NNRBM | [private] |
m_RPROP_updateMin (defined in NNRBM) | NNRBM | [private] |
m_scaleOutputs (defined in NNRBM) | NNRBM | [private] |
m_sumSquaredError (defined in NNRBM) | NNRBM | |
m_sumSquaredErrorSamples (defined in NNRBM) | NNRBM | |
m_targetsProbe (defined in NNRBM) | NNRBM | [private] |
m_targetsTrain (defined in NNRBM) | NNRBM | [private] |
m_useBLAS (defined in NNRBM) | NNRBM | [private] |
m_weightDecay (defined in NNRBM) | NNRBM | [private] |
m_weights (defined in NNRBM) | NNRBM | [private] |
m_weightsBatchUpdate (defined in NNRBM) | NNRBM | [private] |
m_weightsOld (defined in NNRBM) | NNRBM | [private] |
m_weightsOldOld (defined in NNRBM) | NNRBM | [private] |
m_weightsTmp0 (defined in NNRBM) | NNRBM | [private] |
m_weightsTmp1 (defined in NNRBM) | NNRBM | [private] |
m_weightsTmp2 (defined in NNRBM) | NNRBM | [private] |
NNRBM() | NNRBM | |
predictSingleInput(REAL *input, REAL *output) | NNRBM | |
printAutoencoderWeightsToJavascript(string fname) (defined in NNRBM) | NNRBM | |
printLearnrate() | NNRBM | |
printMiddleLayerToFile(string fname, REAL *input, REAL *target, int nSamples, int nTarget) | NNRBM | |
rbmPretraining(REAL *input, REAL *target, int nSamples, int nTarget, int firstNLayer=-1, int crossRun=-1, int nFinetuningEpochs=-1, double finetuningLearnRate=0.0) | NNRBM | |
saveWeights() | NNRBM | [private] |
setAdditionalStartupParameter(char *s) | Framework | [static] |
setBatchSize(int size) | NNRBM | |
setDatasetType(bool isClassification) | Framework | [static] |
setFrameworkMode(int mode) | Framework | [static] |
setGlobalEpochs(int e) | NNRBM | |
setInitWeightFactor(REAL factor) | NNRBM | |
setL1Regularization(bool en) | NNRBM | |
setLearnrate(REAL learnrate) | NNRBM | |
setLearnrateMinimum(REAL learnrateMin) | NNRBM | |
setLearnrateSubtractionValueAfterEveryEpoch(REAL learnrateDecreaseRate) | NNRBM | |
setLearnrateSubtractionValueAfterEverySample(REAL learnrateDecreaseRate) | NNRBM | |
setMaxEpochs(int epochs) | NNRBM | |
setMaxThreads(int n) | Framework | [static] |
setMinUpdateErrorBound(REAL minUpdateBound) | NNRBM | |
setMomentum(REAL momentum) | NNRBM | |
setNNStructure(int nrLayer, int *neuronsPerLayer, bool lastLinearLayer=false, int *layerType=0) | NNRBM | |
setNormalTrainStopping(bool en) | NNRBM | |
setNrExamplesProbe(int n) | NNRBM | |
setNrExamplesTrain(int n) | NNRBM | |
setNrInputs(int n) | NNRBM | |
setNrTargets(int n) | NNRBM | |
setProbeInputs(REAL *inputs) | NNRBM | |
setProbeTargets(REAL *targets) | NNRBM | |
setRandomSeed(int n) | Framework | [static] |
setRBMLearnParams(REAL learnrateWeights, REAL learnrateBiasVis, REAL learnrateBiasHid, REAL weightDecay, int maxEpoch) | NNRBM | |
setRPROPMinMaxUpdate(REAL min, REAL max) | NNRBM | |
setRPROPPosNeg(REAL etaPos, REAL etaNeg) | NNRBM | |
setScaleOffset(REAL scale, REAL offset) | NNRBM | |
setTrainInputs(REAL *inputs) | NNRBM | |
setTrainTargets(REAL *targets) | NNRBM | |
setWeightDecay(REAL weightDecay) | NNRBM | |
setWeights(REAL *w) | NNRBM | |
trainNN() | NNRBM | |
trainOneEpoch(bool *updateLayer=0) | NNRBM | |
useBLASforTraining(bool enable) | NNRBM | |
~Framework() | Framework | |
~NNRBM() | NNRBM | |