, including all inherited members.
addConstantInput() | Data | |
addDoubleParameter(double *param, string name, double min=-DBL_MAX, double max=DBL_MAX) | AutomaticParameterTuner | |
addEpochParameter(int *param, string name) | AutomaticParameterTuner | |
addIntegerParameter(int *param, string name, int min=INT_MIN, int max=INT_MAX) | AutomaticParameterTuner | |
Algorithm() | Algorithm | |
allocMemForCrossValidationSets() | Data | |
AUC() | AUC | |
AutomaticParameterTuner() | AutomaticParameterTuner | |
baggingRandomSeed(uint seed) | Data | |
calcCenter(const vector< pair< double, vector< double > > > &simplexPoints, vector< double > ¢er) | AutomaticParameterTuner | [protected] |
calcError(const vector< double > ¶mVector) | AutomaticParameterTuner | [protected] |
calcMinMax(const vector< pair< double, vector< double > > > &simplexPoints, int paramNr, double &min, double &max) | AutomaticParameterTuner | [protected] |
calcRMSEonBlend() | StandardAlgorithm | [virtual] |
calcRMSEonProbe() | StandardAlgorithm | [virtual] |
calculateFullPrediction() | StandardAlgorithm | [protected] |
clipValue(REAL input, REAL low, REAL high) | Algorithm | |
StandardAlgorithm::Algorithm::Framework::convertDateToInt(uint day, uint month, uint year, uint hour, uint minute, uint second) | Framework | [static] |
StandardAlgorithm::Algorithm::Data::convertDateToInt(uint day, uint month, uint year, uint hour, uint minute, uint second) | Framework | [static] |
StandardAlgorithm::AutomaticParameterTuner::convertDateToInt(uint day, uint month, uint year, uint hour, uint minute, uint second) | Framework | [static] |
StandardAlgorithm::AUC::convertDateToInt(uint day, uint month, uint year, uint hour, uint minute, uint second) | Framework | [static] |
StandardAlgorithm::Framework::convertDateToInt(uint day, uint month, uint year, uint hour, uint minute, uint second) | Framework | [static] |
Framework::convertDateToInt(uint day, uint month, uint year, uint hour, uint minute, uint second) | Framework | [static] |
StandardAlgorithm::Algorithm::Framework::convertIntToDate(uint date, uint &day, uint &month, uint &year, uint &hour, uint &minute, uint &second, uint &weekday) | Framework | [static] |
StandardAlgorithm::Algorithm::Data::convertIntToDate(uint date, uint &day, uint &month, uint &year, uint &hour, uint &minute, uint &second, uint &weekday) | Framework | [static] |
StandardAlgorithm::AutomaticParameterTuner::convertIntToDate(uint date, uint &day, uint &month, uint &year, uint &hour, uint &minute, uint &second, uint &weekday) | Framework | [static] |
StandardAlgorithm::AUC::convertIntToDate(uint date, uint &day, uint &month, uint &year, uint &hour, uint &minute, uint &second, uint &weekday) | Framework | [static] |
StandardAlgorithm::Framework::convertIntToDate(uint date, uint &day, uint &month, uint &year, uint &hour, uint &minute, uint &second, uint &weekday) | Framework | [static] |
Framework::convertIntToDate(uint date, uint &day, uint &month, uint &year, uint &hour, uint &minute, uint &second, uint &weekday) | Framework | [static] |
Data() | Data | |
deleteMemory() | Data | |
doBootstrapSampling(REAL *probs, REAL *&train, REAL *&target, REAL *&targetEff, REAL *&targetRes, int *&label, int nTrainNew=0) | Data | |
doFeatureSelection() | Data | |
enableBagging(bool en) | Data | |
expSearchChangeParams() | AutomaticParameterTuner | |
expSearchCheckErr(double error) | AutomaticParameterTuner | |
expSearcher(int minEpochs=0, int maxEpochs=200, int paramEpochs=3, int accelerationEpochs=2, double expInit=0.8, bool enableProbe=true, bool enableBlend=true) | AutomaticParameterTuner | |
expSearchGetLowestError() | AutomaticParameterTuner | |
expSearchParams(int minEpochs=0, int maxEpochs=100, int paramEpochs=3, int accelerationEpochs=10000, double expInit=0.8) | AutomaticParameterTuner | |
expSearchReinitStepSize() | AutomaticParameterTuner | |
expSearchSetEpochsToMinimizeBlend(int epochs) | AutomaticParameterTuner | |
extendTrainDataWithCascadeInputs() | Data | |
fillCascadeLearningInputs() | Data | |
fillNCrossValidationSet(int n) | Data | |
StandardAlgorithm::Algorithm::Framework::Framework() | Framework | |
StandardAlgorithm::Algorithm::Data::Framework() | Framework | |
StandardAlgorithm::AutomaticParameterTuner::Framework() | Framework | |
StandardAlgorithm::AUC::Framework() | Framework | |
StandardAlgorithm::Framework::Framework() | Framework | |
Framework::Framework() | Framework | |
freeNCrossValidationSet(int n) | Data | |
StandardAlgorithm::Algorithm::Framework::getAdditionalStartupParameter() | Framework | [static] |
StandardAlgorithm::Algorithm::Data::getAdditionalStartupParameter() | Framework | [static] |
StandardAlgorithm::AutomaticParameterTuner::getAdditionalStartupParameter() | Framework | [static] |
StandardAlgorithm::AUC::getAdditionalStartupParameter() | Framework | [static] |
StandardAlgorithm::Framework::getAdditionalStartupParameter() | Framework | [static] |
Framework::getAdditionalStartupParameter() | Framework | [static] |
getAUC(REAL *prediction, int *labels, int nClass, int nDomain, int nLines) | AUC | |
StandardAlgorithm::Algorithm::Framework::getDatasetType() | Framework | [static] |
StandardAlgorithm::Algorithm::Data::getDatasetType() | Framework | [static] |
StandardAlgorithm::AutomaticParameterTuner::getDatasetType() | Framework | [static] |
StandardAlgorithm::AUC::getDatasetType() | Framework | [static] |
StandardAlgorithm::Framework::getDatasetType() | Framework | [static] |
Framework::getDatasetType() | Framework | [static] |
getDirectoryFileList(string path) | Data | [static] |
StandardAlgorithm::Algorithm::Framework::getFrameworkMode() | Framework | [static] |
StandardAlgorithm::Algorithm::Data::getFrameworkMode() | Framework | [static] |
StandardAlgorithm::AutomaticParameterTuner::getFrameworkMode() | Framework | [static] |
StandardAlgorithm::AUC::getFrameworkMode() | Framework | [static] |
StandardAlgorithm::Framework::getFrameworkMode() | Framework | [static] |
Framework::getFrameworkMode() | Framework | [static] |
StandardAlgorithm::Algorithm::Framework::getMaxThreads() | Framework | [static] |
StandardAlgorithm::Algorithm::Data::getMaxThreads() | Framework | [static] |
StandardAlgorithm::AutomaticParameterTuner::getMaxThreads() | Framework | [static] |
StandardAlgorithm::AUC::getMaxThreads() | Framework | [static] |
StandardAlgorithm::Framework::getMaxThreads() | Framework | [static] |
Framework::getMaxThreads() | Framework | [static] |
StandardAlgorithm::Algorithm::Framework::getRandomSeed() | Framework | [static] |
StandardAlgorithm::Algorithm::Data::getRandomSeed() | Framework | [static] |
StandardAlgorithm::AutomaticParameterTuner::getRandomSeed() | Framework | [static] |
StandardAlgorithm::AUC::getRandomSeed() | Framework | [static] |
StandardAlgorithm::Framework::getRandomSeed() | Framework | [static] |
Framework::getRandomSeed() | Framework | [static] |
getReflectionPoint(const vector< double > ¢er, const vector< double > &worstPoint, vector< double > &reflectionPoint, double alpha) | AutomaticParameterTuner | [protected] |
init() | StandardAlgorithm | [protected] |
loadFeatureSelectionFile() (defined in Data) | Data | |
loadMetaWeights(int cross) (defined in PolynomialRegression) | PolynomialRegression | [virtual] |
loadNormalization(int nCascade=0) | Data | |
loadWeights(int cross) | PolynomialRegression | [virtual] |
m_addConstantInput (defined in Data) | Data | [protected] |
m_addOutputNoise (defined in Data) | Data | [protected] |
m_algorithmID (defined in Data) | Data | [protected] |
m_algorithmName (defined in Data) | Data | [protected] |
m_algorithmNameList (defined in Data) | Data | [protected] |
m_blendingAlgorithm (defined in Data) | Data | [protected] |
m_blendingEnableCrossValidation (defined in Data) | Data | [protected] |
m_blendingRegularization (defined in Data) | Data | [protected] |
m_blendStop (defined in StandardAlgorithm) | StandardAlgorithm | [protected] |
m_boolMap (defined in Data) | Data | [protected] |
m_cascadeInputs (defined in Data) | Data | [protected] |
m_crossIndex (defined in Data) | Data | [protected] |
m_crossValidationPrediction (defined in StandardAlgorithm) | StandardAlgorithm | [protected] |
m_dataPath (defined in Data) | Data | [protected] |
m_datasetName (defined in Data) | Data | [protected] |
m_datasetPath (defined in Data) | Data | [protected] |
m_dimensionalityReduction (defined in Data) | Data | [protected] |
m_disableTraining (defined in Data) | Data | [protected] |
m_disableWriteDscFile (defined in Data) | Data | [protected] |
m_doubleMap (defined in Data) | Data | [protected] |
m_doubleMax (defined in AutomaticParameterTuner) | AutomaticParameterTuner | [protected] |
m_doubleMin (defined in AutomaticParameterTuner) | AutomaticParameterTuner | [protected] |
m_doubleName (defined in AutomaticParameterTuner) | AutomaticParameterTuner | [protected] |
m_doubleParam (defined in AutomaticParameterTuner) | AutomaticParameterTuner | [protected] |
m_dscPath (defined in Data) | Data | [protected] |
m_enableBagging (defined in Data) | Data | [protected] |
m_enableCascadeLearning (defined in Data) | Data | [protected] |
m_enableClipping (defined in StandardAlgorithm) | StandardAlgorithm | [protected] |
m_enableCrossInteractions (defined in PolynomialRegression) | PolynomialRegression | [private] |
m_enableDebug (defined in AutomaticParameterTuner) | AutomaticParameterTuner | [protected] |
m_enableFeatureSelection (defined in Data) | Data | [protected] |
m_enableGlobalBlendingWeights (defined in Data) | Data | [protected] |
m_enableGlobalMeanStdEstimate (defined in Data) | Data | [protected] |
m_enablePostBlendClipping (defined in Data) | Data | [protected] |
m_enablePostNNBlending (defined in Data) | Data | [protected] |
m_enableProbablisticNormalization (defined in Data) | Data | [protected] |
m_enableSaveMemory (defined in Data) | Data | [protected] |
m_enableStaticNormalization (defined in Data) | Data | [protected] |
m_enableTuneSwing (defined in StandardAlgorithm) | StandardAlgorithm | [protected] |
m_epochName (defined in AutomaticParameterTuner) | AutomaticParameterTuner | [protected] |
m_epochParam (defined in AutomaticParameterTuner) | AutomaticParameterTuner | [protected] |
m_epochParamBest (defined in AutomaticParameterTuner) | AutomaticParameterTuner | [protected] |
m_epochParamBreak (defined in AutomaticParameterTuner) | AutomaticParameterTuner | [protected] |
m_epochParamPos (defined in AutomaticParameterTuner) | AutomaticParameterTuner | [protected] |
m_errorFunction (defined in Data) | Data | [protected] |
m_expInit (defined in AutomaticParameterTuner) | AutomaticParameterTuner | [protected] |
m_expSearchAcceleration (defined in AutomaticParameterTuner) | AutomaticParameterTuner | [protected] |
m_expSearchAccelerationEpoch (defined in AutomaticParameterTuner) | AutomaticParameterTuner | [protected] |
m_expSearchDoubleParamBest (defined in AutomaticParameterTuner) | AutomaticParameterTuner | [protected] |
m_expSearchDoubleParamPos (defined in AutomaticParameterTuner) | AutomaticParameterTuner | [protected] |
m_expSearchEpoch (defined in AutomaticParameterTuner) | AutomaticParameterTuner | [protected] |
m_expSearchErrorBest (defined in AutomaticParameterTuner) | AutomaticParameterTuner | [protected] |
m_expSearchExponent (defined in AutomaticParameterTuner) | AutomaticParameterTuner | [protected] |
m_expSearchIntParamBest (defined in AutomaticParameterTuner) | AutomaticParameterTuner | [protected] |
m_expSearchIntParamPos (defined in AutomaticParameterTuner) | AutomaticParameterTuner | [protected] |
m_expSearchMaxEpochs (defined in AutomaticParameterTuner) | AutomaticParameterTuner | [protected] |
m_expSearchMaxEpochsBlend (defined in AutomaticParameterTuner) | AutomaticParameterTuner | [protected] |
m_expSearchMinEpochs (defined in AutomaticParameterTuner) | AutomaticParameterTuner | [protected] |
m_expSearchParamAccelerationEpochs (defined in AutomaticParameterTuner) | AutomaticParameterTuner | [protected] |
m_expSearchParamDirection (defined in AutomaticParameterTuner) | AutomaticParameterTuner | [protected] |
m_expSearchParamEpochs (defined in AutomaticParameterTuner) | AutomaticParameterTuner | [protected] |
m_expSearchTime (defined in AutomaticParameterTuner) | AutomaticParameterTuner | [protected] |
m_expSearchVariationCnt (defined in AutomaticParameterTuner) | AutomaticParameterTuner | [protected] |
m_featureSelectionWriteBinaryDataset (defined in Data) | Data | [protected] |
m_fullPrediction (defined in StandardAlgorithm) | StandardAlgorithm | [protected] |
m_fullPredPath (defined in Data) | Data | [protected] |
m_globalTrainingLoops (defined in Data) | Data | [protected] |
m_initMaxSwing (defined in StandardAlgorithm) | StandardAlgorithm | [protected] |
m_inputDim (defined in PolynomialRegression) | PolynomialRegression | [private] |
m_inRetraining (defined in Algorithm) | Algorithm | |
m_intMap (defined in Data) | Data | [protected] |
m_intMax (defined in AutomaticParameterTuner) | AutomaticParameterTuner | [protected] |
m_intMin (defined in AutomaticParameterTuner) | AutomaticParameterTuner | [protected] |
m_intName (defined in AutomaticParameterTuner) | AutomaticParameterTuner | [protected] |
m_intParam (defined in AutomaticParameterTuner) | AutomaticParameterTuner | [protected] |
m_labelPrediction (defined in StandardAlgorithm) | StandardAlgorithm | [protected] |
m_loadWeightsBeforeTraining (defined in Data) | Data | [protected] |
m_maxSwing (defined in StandardAlgorithm) | StandardAlgorithm | [protected] |
m_maxThreadsInCross (defined in Data) | Data | [protected] |
m_maxTuninigEpochs (defined in StandardAlgorithm) | StandardAlgorithm | [protected] |
m_mean (defined in Data) | Data | [protected] |
m_minimzeBlend (defined in StandardAlgorithm) | StandardAlgorithm | [protected] |
m_minimzeBlendClassificationError (defined in StandardAlgorithm) | StandardAlgorithm | [protected] |
m_minimzeProbe (defined in StandardAlgorithm) | StandardAlgorithm | [protected] |
m_minimzeProbeClassificationError (defined in StandardAlgorithm) | StandardAlgorithm | [protected] |
m_minTuninigEpochs (defined in StandardAlgorithm) | StandardAlgorithm | [protected] |
m_mixDatasetIndices (defined in Data) | Data | [protected] |
m_mixList (defined in Data) | Data | [protected] |
m_nCascadeInputs (defined in Data) | Data | [protected] |
m_nClass (defined in Data) | Data | [protected] |
m_nCross (defined in Data) | Data | [protected] |
m_nDomain (defined in Data) | Data | [protected] |
m_negativeTarget (defined in Data) | Data | [protected] |
m_nFeatures (defined in Data) | Data | [protected] |
m_nMixDataset (defined in Data) | Data | [protected] |
m_nMixTrainList (defined in Data) | Data | [protected] |
m_nTest (defined in Data) | Data | [protected] |
m_nTrain (defined in Data) | Data | [protected] |
m_optimizeBlendRMSE (defined in AutomaticParameterTuner) | AutomaticParameterTuner | [protected] |
m_optimizeProbeRMSE (defined in AutomaticParameterTuner) | AutomaticParameterTuner | [protected] |
m_outOfBagEstimate (defined in StandardAlgorithm) | StandardAlgorithm | [protected] |
m_outOfBagEstimateCnt (defined in StandardAlgorithm) | StandardAlgorithm | [protected] |
m_polyMean (defined in PolynomialRegression) | PolynomialRegression | [private] |
m_polyOrder (defined in PolynomialRegression) | PolynomialRegression | [private] |
m_polyStd (defined in PolynomialRegression) | PolynomialRegression | [private] |
m_positiveTarget (defined in Data) | Data | [protected] |
m_prediction (defined in StandardAlgorithm) | StandardAlgorithm | [protected] |
m_predictionBest (defined in StandardAlgorithm) | StandardAlgorithm | [protected] |
m_predictionProbe (defined in StandardAlgorithm) | StandardAlgorithm | [protected] |
m_probe (defined in Data) | Data | [protected] |
m_probeIndex (defined in Data) | Data | [protected] |
m_probeLabel (defined in Data) | Data | [protected] |
m_probeSize (defined in Data) | Data | [protected] |
m_probeTarget (defined in Data) | Data | [protected] |
m_probeTargetEffect (defined in Data) | Data | [protected] |
m_probeTargetResidual (defined in Data) | Data | [protected] |
m_randomSeedBagging (defined in Data) | Data | [protected] |
m_randSeed (defined in Data) | Data | [protected] |
m_reg (defined in PolynomialRegression) | PolynomialRegression | [private] |
m_singlePrediction (defined in StandardAlgorithm) | StandardAlgorithm | [protected] |
m_slotBoundaries (defined in Data) | Data | [protected] |
m_standardDeviationMin (defined in Data) | Data | [protected] |
m_staticMeanNormalization (defined in Data) | Data | [protected] |
m_staticStdNormalization (defined in Data) | Data | [protected] |
m_std (defined in Data) | Data | [protected] |
m_stringMap (defined in Data) | Data | [protected] |
m_subsampleFeatures (defined in Data) | Data | [protected] |
m_subsampleTrainSet (defined in Data) | Data | [protected] |
m_support (defined in Data) | Data | [protected] |
m_targetMean (defined in Data) | Data | [protected] |
m_tempPath (defined in Data) | Data | [protected] |
m_testLabelOrig (defined in Data) | Data | [protected] |
m_testOrig (defined in Data) | Data | [protected] |
m_testTargetOrig (defined in Data) | Data | [protected] |
m_train (defined in Data) | Data | [protected] |
m_trainBaggingIndex (defined in Data) | Data | [protected] |
m_trainLabel (defined in Data) | Data | [protected] |
m_trainLabelOrig (defined in Data) | Data | [protected] |
m_trainOnFullPredictorFile (defined in Data) | Data | [protected] |
m_trainOrig (defined in Data) | Data | [protected] |
m_trainSize (defined in Data) | Data | [protected] |
m_trainTarget (defined in Data) | Data | [protected] |
m_trainTargetEffect (defined in Data) | Data | [protected] |
m_trainTargetOrig (defined in Data) | Data | [protected] |
m_trainTargetOrigEffect (defined in Data) | Data | [protected] |
m_trainTargetOrigResidual (defined in Data) | Data | [protected] |
m_trainTargetResidual (defined in Data) | Data | [protected] |
m_valid (defined in Data) | Data | [protected] |
m_validationType (defined in Data) | Data | [protected] |
m_validLabel (defined in Data) | Data | [protected] |
m_validSize (defined in Data) | Data | [protected] |
m_validTarget (defined in Data) | Data | [protected] |
m_weightFile (defined in StandardAlgorithm) | StandardAlgorithm | [protected] |
m_wrongLabelCnt (defined in StandardAlgorithm) | StandardAlgorithm | [protected] |
m_x (defined in PolynomialRegression) | PolynomialRegression | [private] |
makeBinaryDataset() | Data | |
mergeTrainAndTest() | Data | |
mixDataset() | Data | |
modelInit() | PolynomialRegression | [virtual] |
modelUpdate(REAL *input, REAL *target, uint nSamples, uint crossRun) | PolynomialRegression | [virtual] |
NelderMeadSearch(int maxEpochs=200) | AutomaticParameterTuner | |
normalizeZeroOne() | Data | |
paramDoubleNames (defined in StandardAlgorithm) | StandardAlgorithm | [protected] |
paramDoubleValues (defined in StandardAlgorithm) | StandardAlgorithm | [protected] |
paramEpochNames (defined in StandardAlgorithm) | StandardAlgorithm | [protected] |
paramEpochValues (defined in StandardAlgorithm) | StandardAlgorithm | [protected] |
paramIntNames (defined in StandardAlgorithm) | StandardAlgorithm | [protected] |
paramIntValues (defined in StandardAlgorithm) | StandardAlgorithm | [protected] |
partitionDatasetToCrossValidationSets() | Data | |
plotParameters(int epoch, const vector< pair< double, vector< double > > > &simplexPoints) | AutomaticParameterTuner | [protected] |
PolynomialRegression() | PolynomialRegression | |
power(REAL x, int e) | PolynomialRegression | [private] |
predictAllOutputs(REAL *rawInputs, REAL *outputs, uint nSamples, uint crossRun) | PolynomialRegression | [virtual] |
predictMultipleOutputs(REAL *rawInput, REAL *effect, REAL *output, int *label, int nSamples, int crossRun) | StandardAlgorithm | [virtual] |
readDataset(string name) | Data | |
readDscFile(string name) | Data | |
readEffectFile() | Data | |
readMaps() | StandardAlgorithm | [protected] |
readParameter(string line, int mode) | Data | |
readSpecificMaps() | PolynomialRegression | [virtual] |
reduceFeatureSize(REAL *&table, int tableRows, int &tableCols, REAL percent, bool loadColumnSet) | Data | |
reduceTrainingSetSize(REAL percent) | Data | |
removeDoubleParameter(string name) | AutomaticParameterTuner | |
removeEpochParameter(string name) | AutomaticParameterTuner | |
removeIntegerParameter(string name) | AutomaticParameterTuner | |
saveBestPrediction() | StandardAlgorithm | [virtual] |
saveFeatureSelectionFile() (defined in Data) | Data | |
saveWeights(int cross) | PolynomialRegression | [virtual] |
StandardAlgorithm::Algorithm::Framework::setAdditionalStartupParameter(char *s) | Framework | [static] |
StandardAlgorithm::Algorithm::Data::setAdditionalStartupParameter(char *s) | Framework | [static] |
StandardAlgorithm::AutomaticParameterTuner::setAdditionalStartupParameter(char *s) | Framework | [static] |
StandardAlgorithm::AUC::setAdditionalStartupParameter(char *s) | Framework | [static] |
StandardAlgorithm::Framework::setAdditionalStartupParameter(char *s) | Framework | [static] |
Framework::setAdditionalStartupParameter(char *s) | Framework | [static] |
setAlgorithmList(vector< string > m_algorithmNameList) | Data | |
setCurrentParameter(const vector< double > ¶mVector) | AutomaticParameterTuner | [protected] |
setDataPointers(Data *data) | Data | |
StandardAlgorithm::Algorithm::Framework::setDatasetType(bool isClassification) | Framework | [static] |
StandardAlgorithm::Algorithm::Data::setDatasetType(bool isClassification) | Framework | [static] |
StandardAlgorithm::AutomaticParameterTuner::setDatasetType(bool isClassification) | Framework | [static] |
StandardAlgorithm::AUC::setDatasetType(bool isClassification) | Framework | [static] |
StandardAlgorithm::Framework::setDatasetType(bool isClassification) | Framework | [static] |
Framework::setDatasetType(bool isClassification) | Framework | [static] |
setDebug(bool en) | AutomaticParameterTuner | |
StandardAlgorithm::Algorithm::Framework::setFrameworkMode(int mode) | Framework | [static] |
StandardAlgorithm::Algorithm::Data::setFrameworkMode(int mode) | Framework | [static] |
StandardAlgorithm::AutomaticParameterTuner::setFrameworkMode(int mode) | Framework | [static] |
StandardAlgorithm::AUC::setFrameworkMode(int mode) | Framework | [static] |
StandardAlgorithm::Framework::setFrameworkMode(int mode) | Framework | [static] |
Framework::setFrameworkMode(int mode) | Framework | [static] |
StandardAlgorithm::Algorithm::Framework::setMaxThreads(int n) | Framework | [static] |
StandardAlgorithm::Algorithm::Data::setMaxThreads(int n) | Framework | [static] |
StandardAlgorithm::AutomaticParameterTuner::setMaxThreads(int n) | Framework | [static] |
StandardAlgorithm::AUC::setMaxThreads(int n) | Framework | [static] |
StandardAlgorithm::Framework::setMaxThreads(int n) | Framework | [static] |
Framework::setMaxThreads(int n) | Framework | [static] |
setOptimizeBlendRmse(bool enable) | AutomaticParameterTuner | |
setOptimizeProbeRmse(bool enable) | AutomaticParameterTuner | |
setPathes(string temp, string dsc, string fullPred, string data) | Data | |
setPredictionMode(int cross) | StandardAlgorithm | [virtual] |
StandardAlgorithm::Algorithm::Framework::setRandomSeed(int n) | Framework | [static] |
StandardAlgorithm::Algorithm::Data::setRandomSeed(int n) | Framework | [static] |
StandardAlgorithm::AutomaticParameterTuner::setRandomSeed(int n) | Framework | [static] |
StandardAlgorithm::AUC::setRandomSeed(int n) | Framework | [static] |
StandardAlgorithm::Framework::setRandomSeed(int n) | Framework | [static] |
Framework::setRandomSeed(int n) | Framework | [static] |
simpleStochasticParameterFinder(double minProbeImpro=0.00002, int maxProbeEpochsWithoutImpro=100, double minBlendImpro=0.000001, int maxBlendEpochsWithoutImpro=200, double stdDev=0.1) | AutomaticParameterTuner | |
solver (defined in PolynomialRegression) | PolynomialRegression | [private] |
splitStringToIntegerList(string str, char delimiter) | Data | [static] |
splitStringToStringList(string str, char delimiter) | Data | [static] |
StandardAlgorithm() | StandardAlgorithm | |
templateGenerator(int id, string preEffect, int nameID, bool blendStop) | PolynomialRegression | [static] |
train() | StandardAlgorithm | [virtual] |
vectorSampling(REAL *probs, int length) | Data | |
writeFullPrediction(int nSamples) | StandardAlgorithm | [protected] |
~Algorithm() | Algorithm | [virtual] |
~AUC() | AUC | |
~AutomaticParameterTuner() | AutomaticParameterTuner | [virtual] |
~Data() | Data | [virtual] |
StandardAlgorithm::Algorithm::Framework::~Framework() | Framework | |
StandardAlgorithm::Algorithm::Data::~Framework() | Framework | |
StandardAlgorithm::AutomaticParameterTuner::~Framework() | Framework | |
StandardAlgorithm::AUC::~Framework() | Framework | |
StandardAlgorithm::Framework::~Framework() | Framework | |
Framework::~Framework() | Framework | |
~PolynomialRegression() | PolynomialRegression | |
~StandardAlgorithm() | StandardAlgorithm | |